A free boundary problem with curvature

被引:5
|
作者
Kim, IC [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
comparison principle; free boundary problems; viscosity solutions;
D O I
10.1081/PDE-200044474
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we are interested in a free boundary problem with a motion law involving the mean curvature term of the free boundary. Viscosity solutions are introduced as a notion of global-time solutions past singularities. We show the comparison principle for viscosity solutions, which yields the existence of minimal and maximal solutions for given initial data. We also prove uniqueness of the solution for several classes of initial data and discuss the possibility of nonunique solutions.
引用
收藏
页码:121 / 138
页数:18
相关论文
共 50 条
  • [21] Regularity of a free boundary problem
    Lavi Karp
    Henrik Shahgholian
    The Journal of Geometric Analysis, 1999, 9 (4): : 653 - 669
  • [22] A HYPERBOLIC FREE BOUNDARY PROBLEM
    HILL, CD
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1970, 31 (01) : 117 - &
  • [23] On the free boundary problem of magnetohydrodynamics
    Padula M.
    Solonnikov V.A.
    Journal of Mathematical Sciences, 2011, 178 (3) : 313 - 344
  • [24] Free Boundary Problem of Magnetohydrodynamics
    Frolova E.V.
    Journal of Mathematical Sciences, 2015, 210 (6) : 857 - 877
  • [25] HEAT PROBLEM WITH FREE BOUNDARY
    SHISHKIN, GI
    DOKLADY AKADEMII NAUK SSSR, 1971, 197 (06): : 1276 - &
  • [26] A FREE-BOUNDARY PROBLEM
    ROSSI, AM
    SAMBUCETI, P
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1985, 4C (01): : 1 - 30
  • [27] ON A FREE-BOUNDARY PROBLEM
    BOUGUIMA, SM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (10): : 941 - 943
  • [28] An algorithm for a free boundary problem
    Mustapha, H
    Saramito, P
    PDPTA '04: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS 1-3, 2004, : 1447 - 1454
  • [29] NONLINEAR PROBLEM WITH A FREE BOUNDARY
    BOGATIRO.VA
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1973, (10): : 867 - 870
  • [30] Free boundary problem in semiconductors
    Russo, MR
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6A (02): : 315 - 318