3D magnetic resonance image denoising using low-rank tensor approximation

被引:37
|
作者
Fu, Ying [1 ]
Dong, Weisheng [2 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
[2] Xidian Univ, Sch Elect Engn, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian 710071, Peoples R China
关键词
3D Magnetic resonance image; Low-rank tensor approximation; Non-locality; Self-similarity; MR-IMAGES; NOISE REMOVAL; RICIAN NOISE; ALGORITHM; RESTORATION; FILTRATION; VARIANCE;
D O I
10.1016/j.neucom.2015.09.125
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Magnetic Resonance (MR) Imaging technique has important applications in clinical diagnosis and scientific research. However, in practice the MR images are often corrupted by noise. Existing image denoising methods, mostly designed for natural image denoising do not take into account the multiple dimensionality of the 3D MR images, and are thus not suitable for 3D MR images denoising. In this paper, we present a novel noise reduction method for 3D MR images based on low-rank tensor approximation, considering both the non-local spatial self-similarity and the correlation across the slices of the 3D MR images. Specifically, for each exemplar 3D patch, similar 3D patches are first grouped to form a 4th order tensor. As the similar patches contain similar structures, the latent clear MR images can be recovered by a low-rank tensor approximation. To this end, an adaptive higher order singular value thresholding method is proposed. Experimental results on 3D MR images show that the proposed method can provide substantial improvements over the current state-of-the-art image denoising methods in terms of both objective metric and subjective visual quality. (C) 2016 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:30 / 39
页数:10
相关论文
共 50 条
  • [31] Non-Convex Low-Rank Approximation for Image Denoising and Deblurring
    Lei, Yang
    Song, Zhanjie
    Song, Qiwei
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2016, E99D (05): : 1364 - 1374
  • [32] Image denoising with a low-rank preprocessing before BM3D
    Chen, Hao
    Wei, Ling
    He, Yi
    Li, Xiqi
    Yang, Jingsheng
    Zhang, Yudong
    2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE), 2017, : 358 - 362
  • [33] Hyperspectral Image Recovery Using Non-Convex Low-Rank Tensor Approximation
    Liu, Hongyi
    Li, Hanyang
    Wu, Zebin
    Wei, Zhihui
    REMOTE SENSING, 2020, 12 (14)
  • [34] A Lightweight Grouped Low-rank Tensor Approximation Network for 3D Mesh Reconstruction From Videos
    Zhang, Boyang
    Wu, Suping
    Yang, Leyang
    Wang, Bin
    Lu, Wenlong
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 930 - 935
  • [35] Hyperspectral Image Denoising via Weighted Multidirectional Low-Rank Tensor Recovery
    Su, Yanchi
    Zhu, Haoran
    Wong, Ka-Chun
    Chang, Yi
    Li, Xiangtao
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (05) : 2753 - 2766
  • [36] Adaptive Regularized Low-Rank Tensor Decomposition for Hyperspectral Image Denoising and Destriping
    Li, Dongyi
    Chu, Dong
    Guan, Xiaobin
    He, Wei
    Shen, Huanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 17
  • [37] Low-rank tensor embedded deep neural network for hyperspectral image denoising
    Tu K.
    Xiong F.
    Hou X.
    National Remote Sensing Bulletin, 2024, 28 (01) : 121 - 131
  • [38] On Approximation Algorithm for Orthogonal Low-Rank Tensor Approximation
    Yuning Yang
    Journal of Optimization Theory and Applications, 2022, 194 : 821 - 851
  • [39] On Approximation Algorithm for Orthogonal Low-Rank Tensor Approximation
    Yang, Yuning
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 194 (03) : 821 - 851
  • [40] Rank-1 Tensor Decomposition for Hyperspectral Image Denoising with Nonlocal Low-rank Regularization
    Xue, Jize
    Zhao, Yongqiang
    2017 INTERNATIONAL CONFERENCE ON MACHINE VISION AND INFORMATION TECHNOLOGY (CMVIT), 2017, : 40 - 45