Particle size control of LiCoO2 powders by powder engineering methods

被引:18
|
作者
Shlyakhtin, OA
Yoon, YS
Oh, YJ [1 ]
机构
[1] Korea Inst Sci & Technol, Div Mat Sci & Technol, Seoul 130650, South Korea
[2] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119992, Russia
关键词
batteries; grain growth; grain size; LiCoO2; powder engineering; powders-cheinical preparation;
D O I
10.1016/S0955-2219(03)00019-0
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The directed influence on the micromorphology of precursors during preparation of lithium cobaltate powders by chemical synthesis methods allows to control the size of LiCoO2 crystallites from 4-6 mum to 60-100 nm. Localization of melting during thermolysis by mixing acetate precursors with foaming agents promotes the reduction of grain size from 4-6 down to 1-1.5 mum. More efficient prevention of grain coalescence can be performed by introducing a thermally stable inert encapsulation agent (K2SO4) removed by dissolution after thermal processing. The combination of this method with intense deagglomeration of precursor mixtures by planetary milling results in keeping the grain size at the level of primary LiCoO2 particles (60-80 nm) even at T=800 degreesC. Intense mechanical processing of as-formed LiCoO2 powders is undesirable due to negative influence on the crystallographic ordering processes. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1893 / 1899
页数:7
相关论文
共 50 条
  • [21] Effect of Mg doping on the properties of combustion synthesized LiCoO2 powders
    S. Valanarasu
    R. Chandramohan
    J. Thirumalai
    T. A. Vijayan
    S. R. Srikumar
    T. Mahalingam
    Journal of Materials Science: Materials in Electronics, 2010, 21 : 827 - 832
  • [22] Effect of Mg doping on the properties of combustion synthesized LiCoO2 powders
    Valanarasu, S.
    Chandramohan, R.
    Thirumalai, J.
    Vijayan, T. A.
    Srikumar, S. R.
    Mahalingam, T.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2010, 21 (08) : 827 - 832
  • [23] Synthesis of ultrafine LiCoO2 powders by the sol-gel method
    Sun, YK
    Oh, IH
    Hong, SA
    JOURNAL OF MATERIALS SCIENCE, 1996, 31 (14) : 3617 - 3621
  • [24] Structural and electrochemical investigation of Zn-doped LiCoO2 powders
    Valanarasu, S.
    Chandramohan, R.
    Thirumalai, J.
    Vijayan, T. A.
    IONICS, 2012, 18 (1-2) : 39 - 45
  • [25] Atomistic Simulation Informs Interface Engineering of Nanoscale LiCoO2
    Dahl, Spencer
    Aoki, Toshihiro
    Banerjee, Amitava
    Uberuaga, Blas Pedro
    Castro, Ricardo H. R.
    CHEMISTRY OF MATERIALS, 2022, 34 (17) : 7788 - 7798
  • [26] Fabrication and electrochemical characterization of LiCoO2 cathode powder by mechanochemical process
    Jeon, YA
    No, KS
    Yoon, YS
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (11) : A1870 - A1873
  • [27] Glycerol Assisted Polymeric Precursor Route for the Synthesis of Nanocrystalline LiCoO2 Powders
    Vivekanandhan, S.
    Venkateswarlu, M.
    Satyanarayana, N.
    NSTI NANOTECH 2008, VOL 1, TECHNICAL PROCEEDINGS: MATERIALS, FABRICATION, PARTICLES, AND CHARACTERIZATION, 2008, : 744 - 747
  • [28] Ammonium carboxylates assisted combustion process for the synthesis of nanocrystalline LiCoO2 powders
    Vivekanandhan, S.
    Venkateswarlu, M.
    Satyanarayana, N.
    MATERIALS CHEMISTRY AND PHYSICS, 2008, 109 (2-3) : 241 - 248
  • [29] Synthesis and characterization of ultrafine LiCoO2 powders by a spray-drying method
    Li, YX
    Wan, CR
    Wu, YP
    Jiang, CY
    Zhu, YJ
    JOURNAL OF POWER SOURCES, 2000, 85 (02) : 294 - 298
  • [30] Preparation and electrochemical properties of glass-modified LiCoO2 cathode powders
    Choi, Seung Ho
    Kim, Jung Hyun
    Ko, You Na
    Yang, Kwang Min
    Kang, Yun Chan
    JOURNAL OF POWER SOURCES, 2013, 244 : 129 - 135