Quantile regression (QR) is a valuable tool for data analysis and multiple imputation (MI) of missing values - especially when standard parametric modelling assumptions are violated. Yet, Monte Carlo simulations that systematically evaluate QR-based MI in a variety of different practically relevant settings are still scarce. In this paper, we evaluate the method regarding the imputation of ordinal data and compare the results with other standard and robust imputation methods. We then apply QR-based MI to an empirical dataset, where we seek to identify risk factors for corporal punishment of children by their fathers. We compare the modelling results with previously published findings based on complete cases. Our Monte Carlo results highlight the advantages of QR-based MI over fully parametric imputation models: QR-based MI yields unbiased statistical inferences across large parts of the conditional distribution, when parametric modelling assumptions, such as normal and homoscedastic error terms, are violated. Regarding risk factors for corporal punishment, our MI results support previously published findings based on complete cases. Our empirical results indicate that the identified identified "missing at random" processes in the investigated dataset are negligible.
机构:
Prince Songkla Univ, Fac Sci, Div Computat Sci, Stat & Applicat Res Unit, Hat Yai, ThailandPrince Songkla Univ, Fac Sci, Div Computat Sci, Stat & Applicat Res Unit, Hat Yai, Thailand
机构:
Univ London, London Sch Hyg & Trop Med, London WC1E 7HU, EnglandUniv Tampere, Tampere Sch Publ Hlth, Tampere 33014, Finland
Kenward, Michael G.
Virtanen, Suvi A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tampere, Tampere Sch Publ Hlth, Tampere 33014, Finland
Natl Inst Hlth & Welf, Helsinki, FinlandUniv Tampere, Tampere Sch Publ Hlth, Tampere 33014, Finland
机构:
Middle Tennessee State Univ, Business & Econ Res Ctr, Murfreesboro, TN 37132 USAMiddle Tennessee State Univ, Business & Econ Res Ctr, Murfreesboro, TN 37132 USA
机构:
Univ Texas Hlth Sci Ctr Houston, Univ Texas McGovern Med Sch, Dept Internal Med, Div Clin & Translat Sci, Houston, TX 77030 USAUniv Texas Hlth Sci Ctr Houston, Univ Texas McGovern Med Sch, Dept Internal Med, Div Clin & Translat Sci, Houston, TX 77030 USA
Lee, Minjae
Rahbar, Mohammad H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Hlth Sci Ctr Houston, Univ Texas McGovern Med Sch, Dept Internal Med, Div Clin & Translat Sci, Houston, TX 77030 USA
Univ Texas Hlth Sci Ctr Houston, Sch Publ Hlth, Dept Human Genet & Environm Sci, Houston, TX 77030 USAUniv Texas Hlth Sci Ctr Houston, Univ Texas McGovern Med Sch, Dept Internal Med, Div Clin & Translat Sci, Houston, TX 77030 USA
Rahbar, Mohammad H.
Gensler, Lianne S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Dept Med Rheumatol, San Francisco, CA 94143 USAUniv Texas Hlth Sci Ctr Houston, Univ Texas McGovern Med Sch, Dept Internal Med, Div Clin & Translat Sci, Houston, TX 77030 USA
Gensler, Lianne S.
Brown, Matthew
论文数: 0引用数: 0
h-index: 0
机构:
Queensland Univ Technol, Inst Hlth & Biomed Innovat, Translat Genom Grp, Brisbane, Qld, AustraliaUniv Texas Hlth Sci Ctr Houston, Univ Texas McGovern Med Sch, Dept Internal Med, Div Clin & Translat Sci, Houston, TX 77030 USA
Brown, Matthew
Weisman, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Cedars Sinai Med Ctr, Sch Med, Div Rheumatol, Los Angeles, CA 90048 USAUniv Texas Hlth Sci Ctr Houston, Univ Texas McGovern Med Sch, Dept Internal Med, Div Clin & Translat Sci, Houston, TX 77030 USA
Weisman, Michael
Reveille, John D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Hlth Sci Ctr Houston, Univ Texas McGovern Med Sch, Dept Internal Med, Div Rheumatol & Clin Immunogenet, Houston, TX 77030 USAUniv Texas Hlth Sci Ctr Houston, Univ Texas McGovern Med Sch, Dept Internal Med, Div Clin & Translat Sci, Houston, TX 77030 USA