Ramp Loss Support Vector Data Description

被引:0
|
作者
Xuanthanh, Vo [1 ]
Bach, Tran [1 ]
Hoai An Le Thi [1 ]
Tao Pham Dinh [2 ]
机构
[1] Univ Lorraine, Lab Theoret & Appl Comp Sci EA 3097, F-57045 Metz, France
[2] Univ Normandie, INSA Rouen, Lab Math, Ave Univ 76801, F-76801 St Etienne Du Rouvray, France
关键词
Support vector data description; Ramp loss; DC Programming; DCA;
D O I
10.1007/978-3-319-54472-4_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data description is an important problem that has many applications. Despite the great success, the popular support vector data description (SVDD) has problem with generalization and scalability when training data contains a significant amount of outliers. We propose in this paper the so-called ramp loss SVDD then prove its scalability and robustness. For solving the proposed problem, we develop an efficient algorithm based on DC (Difference of Convex functions) programming and DCA (DC Algorithm). Preliminary experiments on both synthetic and real data show the efficiency of our approach.
引用
收藏
页码:421 / 431
页数:11
相关论文
共 50 条
  • [31] Incremental Learning with Support Vector Data Description
    Xie, Weiyi
    Uhlmann, Stefan
    Kiranyaz, Serkan
    Gabbouj, Moncef
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3904 - 3909
  • [32] Multimodal subspace support vector data description
    Sohrab, Fahad
    Raitoharju, Jenni
    Iosifidis, Alexandros
    Gabbouj, Moncef
    PATTERN RECOGNITION, 2021, 110
  • [33] Weighted support vector data description classifier
    Zhang, Yong
    Chi, Zhongxian
    Xie, Fuding
    Li, Nan
    Journal of Computational Information Systems, 2008, 4 (02): : 589 - 594
  • [34] Ellipsoidal Subspace Support Vector Data Description
    Sohrab, Fahad
    Raitoharju, Jenni
    Iosifidis, Alexandros
    Gabbouj, Moncef
    IEEE ACCESS, 2020, 8 : 122013 - 122025
  • [35] Coordinate Descent Algorithm for Ramp Loss Linear Programming Support Vector Machines
    Xiangming Xi
    Xiaolin Huang
    Johan A. K. Suykens
    Shuning Wang
    Neural Processing Letters, 2016, 43 : 887 - 903
  • [36] Coordinate Descent Algorithm for Ramp Loss Linear Programming Support Vector Machines
    Xi, Xiangming
    Huang, Xiaolin
    Suykens, Johan A. K.
    Wang, Shuning
    NEURAL PROCESSING LETTERS, 2016, 43 (03) : 887 - 903
  • [37] Training robust support vector machine with smooth Ramp loss in the primal space
    Wang, Lei
    Jia, Huading
    Li, Jie
    NEUROCOMPUTING, 2008, 71 (13-15) : 3020 - 3025
  • [38] Detection of Encrypted data Based on Support Vector Data Description
    Meng, Juan
    Zhou, Yuhuan
    Pan, Zhisong
    2013 INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD), 2013, : 187 - 191
  • [39] Data Driven Generation of Synthetic Data with Support Vector Data Description
    Yunus, Fajrian
    Dandekar, Ashish
    Bressan, Stephane
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2017, PT II, 2017, 10439 : 290 - 298
  • [40] Generalized support vector data description for anomaly detection
    Turkoz, Mehmet
    Kim, Sangahn
    Son, Youngdoo
    Jeong, Myong K.
    Elsayed, Elsayed A.
    PATTERN RECOGNITION, 2020, 100