Graph model-based salient object detection using objectness and multiple saliency cues

被引:31
|
作者
Ji, Yuzhu [1 ]
Zhang, Haijun [1 ]
Tseng, Kuo-Kun [1 ]
Chow, Tommy W. S. [2 ]
Wu, Q. M. Jonathan [3 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Dept Comp Sci, Shenzhen, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
[3] Univ Windsor, Dept Elect & Comp Engn, Windsor, ON, Canada
基金
国家重点研发计划;
关键词
Salient object; Objectness; Graph model; Manifold ranking; Multiple cues; REGION DETECTION;
D O I
10.1016/j.neucom.2018.09.081
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent years have witnessed increasing interest in salient object detection, which aims at stimulating the human visual attention mechanism to detect and segment the most attractive object in natural scenes, and can be widely applied in numerous computer vision tasks. In this paper, by considering both objectness cue and saliency detection, we propose a graph model-based bottom-up salient object detection framework by fusing multiple saliency maps using low-level features and objectness features under a manifold ranking framework. Specifically, for each feature, we utilize geodesic distance between any two superpixels to construct the affinity matrix and un-normalized Laplacian matrix of the graph. Then, we apply saliency optimization to refine each saliency map generated by manifold ranking with the first-stage query, and integrate saliency maps corresponding to different features by multilayer cellular automata in the final stage. Extensive experimental results demonstrate that our method can deliver promising performance in comparison to several state-of-the-art bottom-up methods on many benchmark datasets. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:188 / 202
页数:15
相关论文
共 50 条
  • [31] Multi-graph Based Salient Object Detection
    Filali, Idir
    Allili, Mohand Said
    Benblidia, Nadjia
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2016), 2016, 9730 : 318 - 324
  • [32] A PRIOR-BASED GRAPH FOR SALIENT OBJECT DETECTION
    Zhang, Jinxia
    Ehinger, Krista A.
    Ding, Jundi
    Yang, Jingyu
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1175 - 1178
  • [33] Multi-scale salient object detection using graph ranking and global-local saliency refinement
    Filali, Idir
    Allili, Mohand Said
    Benblidia, Nadjia
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2016, 47 : 380 - 401
  • [34] Co-Salient Object Detection Based on Deep Saliency Networks and Seed Propagation Over an Integrated Graph
    Jeong, Dong-ju
    Hwang, Insung
    Cho, Nam Ik
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (12) : 5866 - 5879
  • [35] Region Diversity Based Saliency Density Maximization for Salient Object Detection
    He, Xin
    Jing, Huiyun
    Han, Qi
    Niu, Xiamu
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (01) : 394 - 397
  • [36] Salient object detection using background subtraction, Gabor filters, objectness and minimum directional backgroundness
    Srivastava, Gargi
    Srivastava, Rajeev
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 62 : 330 - 339
  • [37] Multi-scale Diffusion-based Salient Object Detection with Background and Objectness Seeds
    Yang, Sai
    Liu, Fan
    Chen, Juan
    Xiao, Dibo
    Zhu, Hairong
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2018, 12 (10): : 4976 - 4994
  • [38] A Multiple Graph Label Propagation Integration Framework for Salient Object Detection
    Jingbo Zhou
    Yongfeng Ren
    Yunyang Yan
    Li Pan
    Neural Processing Letters, 2016, 44 : 681 - 699
  • [39] Saliency detection by selective strategy for salient object segmentation
    Deng, Qiang
    Luo, Yupin
    Journal of Multimedia, 2012, 7 (06): : 420 - 428
  • [40] A Multiple Graph Label Propagation Integration Framework for Salient Object Detection
    Zhou, Jingbo
    Ren, Yongfeng
    Yan, Yunyang
    Pan, Li
    NEURAL PROCESSING LETTERS, 2016, 44 (03) : 681 - 699