Brittle failure of rock: A review and general linear criterion

被引:38
|
作者
Labuz, Joseph F. [1 ]
Zeng, Feitao [1 ,2 ]
Makhnenko, Roman [3 ]
Li, Yuan [4 ]
机构
[1] Univ Minnesota, Dept Civil Environm & Geoengn, Minneapolis, MN 55455 USA
[2] Dalian Univ Technol, Dept Engn Mech, Dalian, Liaoning, Peoples R China
[3] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA
[4] Univ Sci & Technol Beijing, Dept Civil Engn, Beijing, Peoples R China
关键词
Failure criteria; Failure surface; Friction angle; Intermediate stress effect; Multiaxial testing; Triaxial compression; Triaxial extension; True triaxial testing; STRESS-STRAIN THEORY; TRUE TRIAXIAL CELL; STRENGTH CRITERION; MOHR-COULOMB; SHEAR-BAND; YIELD; MODEL; CONCRETE; INTEGRATION; SANDSTONE;
D O I
10.1016/j.jsg.2018.04.007
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
A failure criterion typically is phenomenological since few models exist to theoretically derive the mathematical function. Indeed, a successful failure criterion is a generalization of experimental data obtained from strength tests on specimens subjected to known stress states. For isotropic rock that exhibits a pressure dependence on strength, a popular failure criterion is a linear equation in major and minor principal stresses, independent of the intermediate principal stress. A general linear failure criterion called Paul-Mohr-Coulomb (PMC) contains all three principal stresses with three material constants: friction angles for axisymmetric compression phi(c), and extension phi(c) and isotropic tensile strength V-0. PMC provides a framework to describe a nonlinear failure surface by a set of planes "hugging" the curved surface. Brittle failure of rock is reviewed and multiaxial test methods are summarized. Equations are presented to implement PMC for fitting strength data and determining the three material parameters. A piecewise linear approximation to a nonlinear failure surface is illustrated by fitting two planes with six material parameters to form either a 6- to 12-sided pyramid or a 6- to 12- to 6-sided pyramid. The particular nature of the failure surface is dictated by the experimental data.
引用
收藏
页码:7 / 28
页数:22
相关论文
共 50 条
  • [31] A MICROCRACK MODEL FOR THE DEFORMATION AND FAILURE OF BRITTLE ROCK
    COSTIN, LS
    JOURNAL OF GEOPHYSICAL RESEARCH, 1983, 88 (NB11): : 9485 - 9492
  • [32] Energy characteristics of brittle rock in failure process
    Tang Aijun
    Shi Chenggong
    Wang Ying
    Wang Jianhua
    ADVANCES IN CIVIL AND INDUSTRIAL ENGINEERING IV, 2014, 580-583 : 260 - 263
  • [33] Quasi-brittle rock failure model
    Kornev, V. M.
    Zinov'ev, A. A.
    JOURNAL OF MINING SCIENCE, 2013, 49 (04) : 576 - 582
  • [34] Micromechanical analysis of the failure process of brittle rock
    Duan, K.
    Kwok, C. Y.
    Tham, L. G.
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2015, 39 (06) : 618 - 634
  • [35] Mobilised strength components in brittle failure of rock
    Hajiabdolmajid, V
    Kaiser, P
    Martin, CD
    GEOTECHNIQUE, 2003, 53 (03): : 327 - 336
  • [36] THE BRITTLE FAILURE OF ROCK AROUND UNDERGROUND OPENINGS
    LU, JY
    DU, LH
    ZOU, CJ
    WANG, ZB
    ROCK AT GREAT DEPTH, VOL 2: ROCK MECHANICS AND ROCK PHYSICS AT GREAT DEPTH, 1989, : 567 - 574
  • [37] Quasi-brittle rock failure model
    V. M. Kornev
    A. A. Zinov’ev
    Journal of Mining Science, 2013, 49 : 576 - 582
  • [38] Brittle rock strength failure: Laboratory and in situ
    Martin, CD
    EIGHTH INTERNATIONAL CONGRESS ON ROCK MECHANICS, VOL 3, PROCEEDINGS, 1997, : 1033 - 1040
  • [39] STABILITY ANALYSIS OF SLOPES WITH GENERAL NON-LINEAR FAILURE CRITERION.
    Zhang, X.J.
    Chen, Wai.F.
    Purdue University, School of Civil Engineering, Structural Engineering (Technical Report) CE-STR, 1984,
  • [40] A Semi-empirical Failure Criterion for Brittle Rocks
    Qi-Zhi Zhu
    Jian-Fu Shao
    Rock Mechanics and Rock Engineering, 2020, 53 : 4271 - 4277