DYNAMICS FOR A NON-AUTONOMOUS REACTION DIFFUSION MODEL WITH THE FRACTIONAL DIFFUSION

被引:4
|
作者
Tan, Wen [1 ,2 ]
Sun, Chunyou [3 ]
机构
[1] Shenzhen Univ, Sch Math & Stat, Shenzhen 518060, Guangdong, Peoples R China
[2] Shenzhen Univ, Coll Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Guangdong, Peoples R China
[3] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
关键词
Non-autonomous; fractional diffusion; Tail estimate; (L-2; L2+delta) pull-back attraction; H-s) pullback attractors; PULLBACK ATTRACTORS; L-P; EQUATIONS;
D O I
10.3934/dcds.2017260
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the dynamics of a non-autonomous reaction diffusion model with the fractional diffusion on the whole space. We firstly prove the existence of a (L-2,L-2) pullback Du-attractor of this model. Then we show that the pullback Du-attractor attract the Du class (especially all L-2-bounded set) in L2+delta-norm for any delta is an element of[0,infinity). Moreover, the solution of the model is shown to be continuous in H-s with respect to initial data under a slightly stronger condition on external forcing term. As an application, we prove that the (L-2,L-2) pullback Du-attractor indeed attract the class of Du in H-s-norm, and thus the existence of a (L-2,H-s) pullback Du-attractor is obtained.
引用
收藏
页码:6035 / 6067
页数:33
相关论文
共 50 条
  • [21] Pullback attractors for non-autonomous reaction-diffusion equations in Lp
    Li, Yongjun
    Wang, Suyun
    Wu, Hongqing
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 373 - 379
  • [22] Pullback attractors for non-autonomous reaction-diffusion equations on Rn
    Wang, Bixiang
    FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (03) : 563 - 583
  • [23] Pullback attractors for the non-autonomous reaction-diffusion equations in RN
    Zhu, Kaixuan
    Xie, Yongqin
    Zhou, Feng
    Li, Xin
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (03)
  • [24] Uniform attractors for the non-autonomous reaction-diffusion equations with delays
    Zhu, Kaixuan
    Xie, Yongqin
    Zhou, Feng
    Li, Xin
    ASYMPTOTIC ANALYSIS, 2021, 123 (3-4) : 263 - 288
  • [25] Pullback attractors for non-autonomous reaction-diffusion equations on ℝn
    Bixiang Wang
    Frontiers of Mathematics in China, 2009, 4 : 563 - 583
  • [26] INSTANTANEOUS BLOW-UP OF SEMILINEAR NON-AUTONOMOUS EQUATIONS WITH FRACTIONAL DIFFUSION
    Villa-Morales, Jose
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [27] Mathematical analysis of autonomous and non-autonomous age-structured reaction-diffusion-advection population model
    Huo, Jiawei
    Yuan, Rong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (02) : 2667 - 2696
  • [28] Finite fractal dimension of random attractors for non-autonomous fractional stochastic reaction-diffusion equations in R
    Shu, Ji
    Bai, Qianqian
    Huang, Xin
    Zhang, Jian
    APPLICABLE ANALYSIS, 2022, 101 (06) : 2217 - 2238
  • [29] Global dynamics for non-autonomous reaction-diffusion neural networks with time-varying delays
    Yang, Zhiguo
    Xu, Daoyi
    THEORETICAL COMPUTER SCIENCE, 2008, 403 (01) : 3 - 10
  • [30] Continuity and pullback attractors for a non-autonomous reaction-diffusion equation in RN
    Zhu, Kaixuan
    Zhou, Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (10) : 2089 - 2105