Notch Signaling Activation Enhances Human Adipose-Derived Stem Cell Retinal Differentiation

被引:11
|
作者
Huang, Yuqiang [1 ,2 ]
Ng, Tsz Kin [1 ,2 ,3 ,4 ]
Chen, Chong-Bo [1 ,2 ]
Huang, Bing [1 ,2 ]
Liang, Jiajian [1 ,2 ]
Pang, Chi Pui [1 ,2 ,4 ]
Zhang, Mingzhi [1 ,2 ]
机构
[1] Shantou Univ, Joint Shantou Int Eye Ctr, Shantou, Guangdong, Peoples R China
[2] Chinese Univ Hong Kong, Shantou, Guangdong, Peoples R China
[3] Shantou Univ, Coll Med, Shantou, Guandong, Peoples R China
[4] Chinese Univ Hong Kong, Dept Ophthalmol & Visual Sci, Hong Kong, Hong Kong, Peoples R China
关键词
PROGENITOR CELLS; TISSUE; PROLIFERATION; MAINTENANCE; ANTAGONISM; EXPRESSION; GLUTAMATE; FATE;
D O I
10.1155/2018/9201374
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Retinal disease treatment by stem cell-based replacement relies on stem cell differentiation into retinal cells. We previously demonstrated that human periodontal ligament-derived stem cells can be directed into retinal lineage upon induction. Here, we report the transdifferentiation potential of human adipose-derived stem cells (ASCs) into retinal lineage and its enhancement by Notch signaling modulation. Human ASCs, isolated from abdominal fat, expressed mesenchymal but not hematopoietic stem cell markers, and they can differentiate into adipocytes, chondrocytes, and osteoblasts in vitro. Upon noggin/Dkk-1/IGF-1 induction, the treated ASCs showed elevated expression of retinal progenitor, retinal ganglion, and photoreceptor cell markers as well as the glutamate-evoked calcium response, which was not observed in the noninduced cells. Compared to the regular induction treatment, Notch signaling activation by JAG1 enhanced the expression of retinal progenitor and precursor markers without affecting the glutamate-evoked calcium response. In contrast, Notch signaling inhibition by DAPT showed more retinal ganglion cells, but delayed the response to glutamate stimulation. In summary, our results revealed that human ASCs possess a retinal transdifferentiation potential upon noggin/Dkk-1/IGF-1 induction, which can further be enhanced by Notch signaling activation.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] The Role of Calcium in Differentiation of Human Adipose-Derived Stem Cells to Adipocytes
    Farjam Goudarzi
    Adel Mohammadalipour
    Iraj Khodadadi
    Sheno Karimi
    Rezvan Mostoli
    Majid Bahabadi
    Mohammad Taghi Goodarzi
    Molecular Biotechnology, 2018, 60 : 279 - 289
  • [42] Neuronal Differentiation Potential of Human Adipose-Derived Mesenchymal Stem Cells
    Anghileri, Elena
    Marconi, Silvia
    Pignatelli, Angela
    Cifelli, Pierangelo
    Galie, Mirco
    Sbarbati, Andrea
    Krampera, Mauro
    Belluzzi, Ottorino
    Bonetti, Bruno
    STEM CELLS AND DEVELOPMENT, 2008, 17 (05) : 909 - 916
  • [43] Obesity inhibits the osteogenic differentiation of human adipose-derived stem cells
    Amy L. Strong
    Ryan S. Hunter
    Robert B. Jones
    Annie C. Bowles
    Maria F. Dutreil
    Dina Gaupp
    Daniel J. Hayes
    Jeffrey M. Gimble
    Benjamin Levi
    Margaret A. McNulty
    Bruce A. Bunnell
    Journal of Translational Medicine, 14
  • [44] Effects of Thymoquinone on Adipocyte Differentiation in Human Adipose-Derived Stem Cells
    Shahbodi, Monireh
    Emami, Seyed Ahmad
    Javadi, Behjat
    Tayarani-Najaran, Zahra
    CELL BIOCHEMISTRY AND BIOPHYSICS, 2022, 80 (04) : 771 - 779
  • [45] Reversion of neuronal differentiation induced in human adipose-derived stem cells
    Hernandez, Rosa
    Perazzoli, Gloria
    Mesas, Cristina
    Quinonero, Francisco
    Doello, Kevin
    Ortiz, Raul
    Prados, Jose
    Melguizo, Consolacion
    EUROPEAN JOURNAL OF ANATOMY, 2022, 26 (04) : 433 - 441
  • [46] Inactivation of Wnt/β-catenin signaling in human adipose-derived stem cells is necessary for chondrogenic differentiation and maintenance
    Luo, Simin
    Shi, Qiping
    Zha, Zhengang
    Yao, Ping
    Lin, Hongsheng
    Liu, Ning
    Wu, Hao
    Sun, Shangyun
    BIOMEDICINE & PHARMACOTHERAPY, 2013, 67 (08) : 819 - 824
  • [47] lncRNAs are associated with polysomes during adipose-derived stem cell differentiation
    Dallagiovanna, Bruno
    Pereira, Isabela T.
    Origa-Alves, Ana Carolina
    Shigunov, Patricia
    Naya, Hugo
    Spangenberg, Lucia
    GENE, 2017, 610 : 103 - 111
  • [48] Adipose-derived stem cell differentiation as a basic tool for vascularized adipose tissue engineering
    Volz, Ann-Cathrin
    Huber, Birgit
    Kluger, Petra J.
    DIFFERENTIATION, 2016, 92 (1-2) : 52 - 64
  • [49] HYPOXIA ENHANCES DIFFERENTIATION OF ADIPOSE-DERIVED STEM CELLS TO SMOOTH MUSCLE CELLS.
    Wang, F.
    Zachar, V.
    Pennisi, P.
    Fink, T.
    Maeda, Y.
    Emmersen, J.
    DISEASES OF THE COLON & RECTUM, 2016, 59 (05) : E123 - E123
  • [50] Anti-DKK1 Enhances the Early Osteogenic Differentiation of Human Adipose-Derived Stem/Stromal Cells
    Wang, Yiyun
    Negri, Stefano
    Li, Zhao
    Xu, Jiajia
    Hsu, Chingyun
    Peault, Bruno
    Broderick, Kristen
    James, Aaron W.
    STEM CELLS AND DEVELOPMENT, 2020, 29 (15) : 1007 - 1015