Iridium thin-film coatings for the BabyIAXO hybrid X-ray optic

被引:3
|
作者
Henriksen, Peter L. [1 ]
Ferreira, Desiree D. M. [1 ]
Massahi, Sonny [1 ]
Civitani, Marta C. [2 ]
Basso, Stefano [2 ]
Vogel, Julia [3 ]
Armendariz, Jaime R. [3 ]
Knudsen, Erik B. [4 ]
Irastorza, Igor G. [5 ]
Christensen, Finn E. [1 ]
机构
[1] Tech Univ Denmark, DTU Space, Lyngby, Denmark
[2] INAF Osservatorio Astron Brera, Brera, Italy
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[4] Tech Univ Denmark, DTU Phys, Lyngby, Denmark
[5] Univ Zaragoza, Ctr Astroparticle & Nigh Energy Phys CAPA, Zaragoza, Spain
关键词
REFLECTANCE; CONSTANTS;
D O I
10.1364/AO.430304
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Reflective coatings are an essential feature of X-ray telescopes. Their overall performance relies heavily on substrate compatibility and how well they conform to the optics assembly processes. We use X-ray reflectometry (XRR) to demonstrate the compatibility of shaping flat substrates coated with iridium, and show that specular and non-specular reflectance before and after shaping is on par with traditional hot-slumped coated substrates. From 1.487 and 8.048 keV measurements, we find that the substrates have rms roughness of 0.38 nm and magnetron sputtered iridium deposits with rms surface roughness of 0.27-0.35 nm. A hydrocarbon overlayer from atmospheric contamination is present with a thickness of 1.4-1.6 nm and a density of 1.2-1.6 g/cm(3). Both the traditional hot slumped and the flat substrates undergoing post-coating shaping have a similar characteristic surface morphology and are equally well-suited for use with X-ray optics. Finally, we demonstrate by simulation the improved effective area achieved by using a low-Z overlayer, and illustrate the performance of a hybrid optic coated with optimized bilayers fora Primakoffazion spectrum emitted by the sun. (C) 2021 Optical Society of America
引用
收藏
页码:6671 / 6681
页数:11
相关论文
共 50 条
  • [41] X-RAY DIFFUSE-SCATTERING AS A PROBE FOR THIN-FILM AND INTERFACE STRUCTURE
    SINHA, SK
    JOURNAL DE PHYSIQUE III, 1994, 4 (09): : 1543 - 1557
  • [42] Modelling the response of polymeric thin-film devices subject to X-ray irradiation
    Alderson, A
    Vinton, SJ
    Wimbush, SC
    SYNTHETIC METALS, 1999, 102 (1-3) : 951 - 952
  • [43] A PARAMETERLESS METHOD TO CORRECT FOR X-RAY ABSORPTION AND FLUORESCENCE IN THIN-FILM MICROANALYSIS
    VANCAPPELLEN, E
    VANDYCK, D
    VANLANDUYT, J
    ADAMS, F
    JOURNAL DE PHYSIQUE, 1984, 45 (NC-2): : 411 - 414
  • [44] X-RAY FLUOROMETRY - CHEMICAL-ANALYSIS VIA THIN-FILM TECHNIQUE
    VAZQUEZ, C
    DELEYT, DV
    ANALES DE LA ASOCIACION QUIMICA ARGENTINA, 1992, 80 (04): : 305 - 319
  • [45] Flexible X-Ray Detector Array Fabricated With Oxide Thin-Film Transistors
    Lujan, R. A.
    Street, R. A.
    IEEE ELECTRON DEVICE LETTERS, 2012, 33 (05) : 688 - 690
  • [46] X-ray quantum optics with Mossbauer nuclei embedded in thin-film cavities
    Heeg, Kilian P.
    Evers, Joerg
    PHYSICAL REVIEW A, 2013, 88 (04):
  • [47] Grazing-exit X-ray spectrometry for surface and thin-film analyses
    Tsuji, K
    Spolnik, Z
    Wagatsuma, K
    Nagata, S
    Satoh, I
    ANALYTICAL SCIENCES, 2001, 17 (01) : 145 - 148
  • [48] USING THIN-FILM STRESS TO PRODUCE PRECISION, FIGURED X-RAY OPTICS
    YUAN, F
    SHI, Y
    KNIGHT, LV
    PERKINS, RT
    ALLRED, DD
    THIN SOLID FILMS, 1992, 220 (1-2) : 284 - 288
  • [49] THE PREPARATION OF THIN-FILM TRANSPARENT BAFCL-EU X-RAY PHOSPHOR
    CARCIA, PF
    BRIXNER, LH
    THIN SOLID FILMS, 1984, 115 (02) : 89 - 95
  • [50] X-Ray Characterization of Low-Thermal-Conductivity Thin-Film Materials
    Zschack, Paul
    Heideman, Colby
    Mortensen, Clay
    Nguyen, Ngoc
    Smeller, Mary
    Lin, Qiyin
    Johnson, David C.
    JOURNAL OF ELECTRONIC MATERIALS, 2009, 38 (07) : 1402 - 1406