Realization Theory for LPV State-Space Representations With Affine Dependence

被引:15
|
作者
Petreczky, Mihaly [1 ]
Toth, Roland [3 ]
Mercere, Guillaume [2 ]
机构
[1] Ctr Rech Informat Signal & Automat Lille, CRIStAL, Cent Lille, CNRS, F-59000 Lille, France
[2] Eindhoven Univ Technol, Control Syst Grp, Dept Elect Engn, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] Univ Poitiers, Lab Informat Automat Syst, 2 Rue P Brousse,Batiment B25,BP 633, F-86022 Poitiers, France
关键词
Linear-parameter varying systems; realization theory; minimality; hankel-matrix; IDENTIFICATION; SYSTEMS; SERIES;
D O I
10.1109/TAC.2016.2629989
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a Kalman-style realization theory for linear parameter-varying state-space representations whose matrices depend on the scheduling variables in an affine way (abbreviated as LPV-SSA). We show that minimality of LPV-SSAs is equivalent to observability and span-reachability rank conditions, and that minimal LPV-SSAs of the same input-output map are isomorphic. We present necessary and sufficient conditions for existence of an LPV-SSA in terms of the rank of a Hankel-matrix and a Ho-Kalman-like realization algorithm.
引用
收藏
页码:4667 / 4674
页数:8
相关论文
共 50 条
  • [41] Realization of State-Space Models for Wave Propagation Simulations
    Stephen A. Ketcham
    Minh Q. Phan
    Richard S. Darling
    Mihan H. McKenna
    The Journal of the Astronautical Sciences, 2013, 60 : 607 - 622
  • [42] On state-space realization of Bezout factorizations in singular systems
    Gao, Z. W.
    Ho, D. W. C.
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 (3-4): : 387 - 410
  • [43] State-space LPV model identification using kernelized machine learning
    Rizvi, Syed Zeeshan
    Velni, Javad Mohammadpour
    Abbasi, Farshid
    Toth, Roland
    Meskin, Nader
    AUTOMATICA, 2018, 88 : 38 - 47
  • [44] Identification of LPV state-space models using ℋ2- minimisation
    Petersson, Daniel
    Löfberg, Johan
    Lecture Notes in Control and Information Sciences, 2012, 416 : 111 - 128
  • [45] State-space regularization: Geometric theory
    Chavent, G
    Kunisch, K
    APPLIED MATHEMATICS AND OPTIMIZATION, 1998, 37 (03): : 243 - 267
  • [46] State-Space Regularization: Geometric Theory
    G. Chavent
    K. Kunisch
    Applied Mathematics and Optimization, 1998, 37 : 243 - 267
  • [47] DETERMINATION OF STATE-SPACE REPRESENTATIONS FOR LINEAR MULTIVARIABLE SYSTEMS
    WOLOVICH, WA
    AUTOMATICA, 1973, 9 (01) : 97 - 106
  • [48] State-space models with finite dimensional dependence
    Gourieroux, C
    Jasiak, J
    JOURNAL OF TIME SERIES ANALYSIS, 2001, 22 (06) : 665 - 678
  • [49] Periodic state-space representations of periodic convolutional codes
    Diego Napp
    Ricardo Pereira
    Raquel Pinto
    Paula Rocha
    Cryptography and Communications, 2019, 11 : 585 - 595
  • [50] Balanced state-space representations: a polynomial algebraic approach
    Rapisarda, P.
    Trentelman, H. L.
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 4334 - 4339