Size-Dependent Distribution of Patient-Specific Hemodynamic Factors in Unruptured Cerebral Aneurysms Using Computational Fluid Dynamics

被引:3
|
作者
Lee, Ui Yun [1 ]
Chung, Gyung Ho [2 ,3 ]
Jung, Jinmu [1 ,4 ]
Kwak, Hyo Sung [2 ,3 ]
机构
[1] Chonbuk Natl Univ, Div Mech Design Engn, Jeonju 54896, South Korea
[2] Chonbuk Natl Univ, Biomed Res Inst, Chonbuk Natl Univ Hosp, Dept Radiol, Jeonju 54907, South Korea
[3] Chonbuk Natl Univ, Biomed Res Inst, Chonbuk Natl Univ Hosp, Res Inst Clin Med, Jeonju 54907, South Korea
[4] Chonbuk Natl Univ, Hemorheol Res Inst, Jeonju 54896, South Korea
基金
新加坡国家研究基金会;
关键词
aneurysm; computational fluid dynamics; non-Newtonian; shear rate; blood viscosity; wall shear stress; WALL SHEAR-STRESS; NEWTONIAN BLOOD-FLOW; INTRACRANIAL ANEURYSMS; BASILAR TERMINUS; ARTERY; RATIO; PERFORMANCE; GROWTH; RISK;
D O I
10.3390/diagnostics10020064
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose: To analyze size-dependent hemodynamic factors [velocity, shear rate, blood viscosity, wall shear stress (WSS)] in unruptured cerebral aneurysms using computational fluid dynamics (CFD) based on the measured non-Newtonian model of viscosity. Methods: Twenty-one patients with unruptured aneurysms formed the study cohort. Patient-specific geometric models were reconstructed for CFD analyses. Aneurysms were divided into small and large groups based on a cutoff size of 5 mm. For comparison between small and large aneurysms, 5 morphologic variables were measured. Patient-specific non-Newtonian blood viscosity was applied for more detailed CFD simulation. Quantitative and qualitative analyses of velocity, shear rate, blood viscosity, and WSS were conducted to compare small and large aneurysms. Results: Complex flow patterns were found in large aneurysms. Large aneurysms had a significantly lower shear rate (235 +/- 341 s(-1)) than small aneurysms (915 +/- 432 s(-1)) at peak-systole. Two times higher blood viscosity was observed in large aneurysms compared with small aneurysms. Lower WSS was found in large aneurysms (1.38 +/- 1.36 Pa) than in small aneurysms (3.53 +/- 1.22 Pa). All the differences in hemodynamic factors between small and large aneurysms were statistically significant. Conclusions: Large aneurysms tended to have complex flow patterns, low shear rate, high blood viscosity, and low WSS. The hemodynamic factors that we analyzed might be useful for decision making before surgical treatment of aneurysms.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Patient-specific Analyses Reveal Differences In Hemodynamic And Morphological Parameters Between Growing And Stable Unruptured Intracranial Aneurysms
    Chien, Aichi
    Yang Hong-Ho
    Colby, Geoffrey
    Szeder, Viktor
    Sayre, James
    Duckwiler, Gary
    Villablanca, Juan
    Salamon, Noriko
    Vinuela, Fernando
    STROKE, 2022, 53
  • [32] Risk Analysis of Unruptured Aneurysms Using Computational Fluid Dynamics Technology: Preliminary Results
    Qian, Y.
    Takao, H.
    Umezu, M.
    Murayama, Y.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2011, 32 (10) : 1948 - 1955
  • [33] COMPUTATIONAL FLUID DYNAMICS OF TWO PATIENT-SPECIFIC SYSTEMIC TO PULMONARY SHUNTS
    Ding, Jinli
    Liu, Youjun
    Chai, Linjuan
    Cao, Xue
    Wang, Feng
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2013, 13 (01)
  • [34] MANUFACTURING AND COMPUTATIONAL FLUID DYNAMICS MODELING OF A PATIENT-SPECIFIC FISTULA MODEL
    Liu, Yang
    Zheng, Yihao
    Pitre, John
    Weitzel, William
    Bull, Joseph
    Shih, Albert
    PROCEEDINGS OF THE ASME 12TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE - 2017, VOL 4, 2017,
  • [35] Impact of aneurysm sac size on the effectiveness of endovascular coiling in patient-specific middle cerebral artery aneurysms: a computational study
    Zhichao Yao
    Hao Wen
    Scientific Reports, 15 (1)
  • [36] Patient-Specific Computational Fluid Dynamics in Ruptured Posterior Communicating Aneurysms Using Measured Non-Newtonian Viscosity : A Preliminary Study
    Lee, Ui Yun
    Jung, Jinmu
    Kwak, Hyo Sung
    Lee, Dong Hwan
    Chung, Gyung Ho
    Park, Jung Soo
    Koh, Eun Jeong
    JOURNAL OF KOREAN NEUROSURGICAL SOCIETY, 2019, 62 (02) : 183 - 192
  • [37] A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms
    Wolters, BJBM
    Rutten, MCM
    Schurink, GWH
    Kose, U
    de Hart, J
    van de Vosse, FN
    MEDICAL ENGINEERING & PHYSICS, 2005, 27 (10) : 871 - 883
  • [38] Effects of aspect ratio, wall thickness and hypertension in the patient-specific computational modeling of cerebral aneurysms using fluid-structure interaction analysis
    Sun, Hong Tao
    Sze, Kam Yim
    Tang, Abraham Yik Sau
    Tsang, Anderson Chun On
    Yu, Alfred Cheuk Hang
    Chow, Kwok Wing
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2019, 13 (01) : 229 - 244
  • [39] Patient-Specific Aided Surgery Approach of Deviated Nasal Septum Using Computational Fluid Dynamics
    Hemtiwakorn, Khaisang
    Mahasitthiwat, Visan
    Tungjitkusolmun, Supan
    Hamamoto, Kazuhiko
    Pintavirooj, Chuchart
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2015, 10 (03) : 274 - 286
  • [40] Numerical investigation of patient-specific thoracic aortic aneurysms and comparison with normal subject via computational fluid dynamics (CFD)
    Mustafa Etli
    Gokhan Canbolat
    Oguz Karahan
    Murat Koru
    Medical & Biological Engineering & Computing, 2021, 59 : 71 - 84