Effects of electronic structure of catalytic nanoparticles on carbon nanotube growth

被引:6
|
作者
Turaeva, Nigora [1 ]
Kuljanishvili, Irma [2 ]
机构
[1] Webster Univ, Dept Biol Sci, 470 East Lockwood Ave, St Louis, MO 63119 USA
[2] St Louis Univ, Dept Phys, 3511 Laclede Ave, St Louis, MO 63103 USA
来源
CARBON TRENDS | 2021年 / 5卷
关键词
Carbon nanotube; Growth; Metal catalyst; Weak and strong chemisorption; The Fermi level; Nanoparticle size;
D O I
10.1016/j.cartre.2021.100092
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The electronic model of the kinetics of carbon nanotube growth catalyzed by metal nanoparticles has been presented in this study using the electron theory of catalysis and the d-band model. This electron model takes into account weak and strong chemisorption of carbon species on the surface of the catalysts, determined by the position of the Fermi level of the catalysts with respect to the antibonding states of the carbon intermediates. The fractions of 'weak' and 'strong' chemisorbed carbon species participating in adsorption, decomposition, diffusion, and incorporation processes are shown to define the carbon nanotube growth rate as a function of the Fermi level of the metal catalyst. The role of chemical nature and size of catalytic nanoparticles in carbon nanotube growth are discussed within this model. This model can be used for the optimization of the nanotube growth rate based on the chemical nature, size, shape or alloying of nanocatalysts. (c) 2021TheAuthors. Published by Elsevier Ltd.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Catalytic nanoparticles on surfaces: Growth, structure and reactivity
    Hrbek, Jan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [42] Electronic structure of Pd nanoparticles on carbon nanotubes
    Felten, A.
    Ghijsen, J.
    Pireaux, J. -J.
    Drube, W.
    Johnson, R. L.
    Liang, D.
    Hecq, M.
    Van Tendeloo, G.
    Bittencourt, C.
    MICRON, 2009, 40 (01) : 74 - 79
  • [43] Electronic structure of cyclodextrin-carbon nanotube composite films
    Jeong, Hae Kyung
    Echeverria, Elena
    Chakraborti, Priyanka
    Hien Thi Le
    Dowben, P. A.
    RSC ADVANCES, 2017, 7 (18) : 10968 - 10972
  • [44] The Structure and Electronic Properties of C80 Carbon Nanotube
    Zhang, Zhong-Shuo
    Zhang, Xiu-Rong
    Gu, Jiang
    Ma, Pan-Tao
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE AND APPLICATIONS (ICMSA 2015), 2015, 3 : 607 - 611
  • [45] Energetics and Electronic Structure of Encapsulated Graphene Nanoribbons in Carbon Nanotube
    Mandal, Bikash
    Sarkar, Sunandan
    Sarkar, Pranab
    JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (36): : 8568 - 8575
  • [46] Electronic structure model of a metal-filled carbon nanotube
    Poklonskii, NA
    Kislyakov, EF
    Fedoruk, GG
    Vyrko, SA
    PHYSICS OF THE SOLID STATE, 2000, 42 (10) : 1966 - 1971
  • [47] Electronic structure calculations for a carbon nanotube capacitor with a dielectric medium
    Uchida, Kazuyuki
    Oshiyama, Atsushi
    PHYSICAL REVIEW B, 2009, 79 (23)
  • [48] Modification of the electronic structure in a carbon nanotube with the charge dopant encapsulation
    Choi, Woon Ih
    Ihm, Jisoon
    Kim, Gunn
    APPLIED PHYSICS LETTERS, 2008, 92 (19)
  • [49] Growth Mechanism of Single-Walled Carbon Nanotube from Catalytic Reaction Inside Carbon Nanotube Template
    Izu, Yoshifumi
    Shiomi, Junichiro
    Takagi, Yoshiteru
    Okada, Susumu
    Maruyama, Shigeo
    ACS NANO, 2010, 4 (08) : 4769 - 4775
  • [50] Carbon nanotube growth from alkali metal salt nanoparticles
    Xu, Xiangju
    Yang, Chen
    Yang, Zhi
    Yang, Keqin
    Huang, Shaoming
    CARBON, 2014, 80 : 490 - 495