On the nature of magnetic turbulence in rotating, shearing flows

被引:32
|
作者
Walker, Justin [1 ]
Lesur, Geoffroy [2 ,3 ]
Boldyrev, Stanislav [1 ]
机构
[1] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
[2] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France
[3] CNRS, IPAG, F-38000 Grenoble, France
基金
美国国家科学基金会;
关键词
accretion; accretion discs; dynamo; MHD; plasmas; ANGULAR-MOMENTUM TRANSPORT; ZERO NET FLUX; MAGNETOROTATIONAL INSTABILITY; ACCRETION DISKS; MHD SIMULATIONS; BOX; STABILITY; FIELDS; DISCS; MODES;
D O I
10.1093/mnrasl/slv200
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The local properties of turbulence driven by themagnetorotational instability (MRI) in rotating, shearing flows are studied in the framework of a shearing-box model. Based on numerical simulations, we propose that the MRI-driven turbulence comprises two components: the large-scale shear-aligned strong magnetic field and the small-scale fluctuations resembling magnetohydrodynamic (MHD) turbulence. The energy spectrum of the large-scale component is close to k(-2), whereas the spectrum of the small-scale component agrees with the spectrum of strong MHD turbulence k(-3/2). While the spectrum of the fluctuations is universal, the outerscale characteristics of the turbulence are not; they depend on the parameters of the system, such as the net magnetic flux. However, there is remarkable universality among the allowed turbulent states -their intensity v(0) and their outer scale lambda(0) satisfy the balance condition v(0)/lambda(0) similar to d Omega/dln r, where d Omega/dln r is the local orbital shearing rate of the flow. Finally, we find no sustained dynamo action in the Pm = 1 zero net-flux case for Reynolds numbers as high as 45 000, casting doubts on the existence of an MRI dynamo in the Pm <= 1 regime.
引用
收藏
页码:L39 / L43
页数:5
相关论文
共 50 条
  • [31] A CRITICAL COMPARISON OF TURBULENCE MODELS FOR HOMOGENEOUS SHEAR FLOWS IN A ROTATING FRAME
    SPEZIALE, CG
    GATSKI, TB
    MHUIRIS, NM
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (09): : 1678 - 1684
  • [32] On the prediction of axisymmetric rotating flows by a one-equation turbulence model
    Vasiliev, VI
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2000, 122 (02): : 264 - 272
  • [33] HIGH REYNOLDS NUMBER TURBULENCE MODEL OF ROTATING SHEAR FLOWS.
    Masuda, Shigeaki
    Koyama, Hide S.
    Ariga, Ichiro
    Bulletin of the JSME, 1983, 26 (219): : 1534 - 1541
  • [34] TOWARD ZONAL HYBRID RANS/LES MODELLING OF TURBULENCE IN ROTATING FLOWS
    de Meux, B. de Laage
    Audebert, B.
    Manceau, R.
    9TH EUROPEAN CONFERENCE ON TURBOMACHINERY: FLUID DYNAMICS AND THERMODYNAMICS, VOLS I AND II, 2011, : 337 - 347
  • [35] Experimental observation of steady inertial wave turbulence in deep rotating flows
    Yarom, Ehud
    Sharon, Eran
    NATURE PHYSICS, 2014, 10 (07) : 510 - 514
  • [36] Magnetic-drift processes in differentially rotating turbulence
    Urpin, V
    Brandenburg, A
    ASTRONOMY & ASTROPHYSICS, 1999, 345 (03) : 1054 - 1058
  • [37] Instabilities responsible for magnetic turbulence in laboratory rotating plasma
    Mikhailovskii, A. B.
    Lominadze, J. G.
    Churikov, A. P.
    Erokhin, N. N.
    Pustovitov, V. D.
    Konovalov, S. V.
    PHYSICS LETTERS A, 2008, 372 (18) : 3274 - 3276
  • [38] Turbulence measurements in a rotating magnetic field driven flow
    Cramer, A.
    Pal, J.
    Gerbeth, G.
    PHYSICS OF FLUIDS, 2012, 24 (04)
  • [39] Resonant effect of a background turbulence on the rotating magnetic island
    Marchenko, VS
    PHYSICS OF PLASMAS, 2005, 12 (07) : 1 - 4
  • [40] Sustained turbulence and magnetic energy in nonrotating shear flows
    Nauman, Farrukh
    Blackman, Eric G.
    PHYSICAL REVIEW E, 2017, 95 (03)