Goodness-of-fit test with nuisance regression and scale

被引:3
|
作者
Jurecková, J [1 ]
Picek, J
Sen, PK
机构
[1] Charles Univ, Prague, Czech Republic
[2] Tech Univ Liberec, Liberec, Czech Republic
[3] Univ N Carolina, Chapel Hill, NC USA
关键词
contiguity; heavier (lighter) tails; regression quantiles; regression rank scores; regression interquartile range;
D O I
10.1007/s001840300262
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the linear model Y-i = x(i)' beta + sigmae(i), i=1,...,n, with unknown (beta, sigma), betais an element ofR(p), sigma>0, and with i.i.d. errors e(1),...,e(n) having a continuous distribution F, we test for the goodness-of-fit hypothesis H-0:F(e)equivalent toF(0)(e/sigma), for a specified symmetric distribution F-0, not necessarily normal. Even the finite sample null distribution of the proposed test criterion is independent of unknown (beta,sigma), and the asymptotic null distribution is normal, as well as the distribution under local (contiguous) alternatives. The proposed tests are consistent against a general class of (nonparametric) alternatives, including the case of F having heavier (or lighter) tails than F-0. A simulation study illustrates a good performance of the tests.
引用
收藏
页码:235 / 258
页数:24
相关论文
共 50 条
  • [41] GOODNESS-OF-FIT TEST WITH GENETIC BACKGROUND
    WU Jihua XIE Minyu PENG Rong SUN Zhihua Department of Mathematics and Statistics Central China Normal University Wuhan China
    JournalofSystemsScienceandComplexity, 2005, (01) : 27 - 34
  • [42] Goodness-of-fit test for hazard rate
    Vital, Ralph-Antoine
    Patil, Prakash
    JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (02) : 403 - 427
  • [43] GOODNESS-OF-FIT TEST ON TWO SAMPLES
    WANG Lixin
    YANG Zhenhai (Department of Applied Mathematics
    Systems Science and Mathematical Sciences, 2000, (02) : 113 - 120
  • [44] Goodness-of-fit test for density estimation
    Kim, C
    Hong, C
    Jeong, M
    Yang, M
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (11) : 2725 - 2741
  • [45] A new goodness-of-fit statistical test
    Apolloni, Bruno
    Bassis, Simone
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2007, 1 (04): : 205 - 218
  • [46] GOODNESS-OF-FIT TEST FOR LOGISTIC DATA
    SHILLINGTON, ER
    BIOMETRICS, 1978, 34 (04) : 748 - 748
  • [47] A goodness-of-fit test for copula densities
    Gayraud, Ghislaine
    Tribouley, Karine
    TEST, 2011, 20 (03) : 549 - 573
  • [48] A goodness-of-fit test for Cauchy distribution
    Rublík, F
    TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 17, 1998, : 71 - 81
  • [49] A goodness-of-fit test for ARCH(∞) models
    Hidalgo, Javier
    Zaffaroni, Paolo
    JOURNAL OF ECONOMETRICS, 2007, 141 (02) : 973 - 1013
  • [50] A goodness-of-fit test for copula densities
    Ghislaine Gayraud
    Karine Tribouley
    TEST, 2011, 20 : 549 - 573