GLOBAL OPTIMALITY IN LOW-RANK MATRIX OPTIMIZATION

被引:0
|
作者
Zhu, Zhihui [1 ]
Li, Qiuwei [1 ]
Tang, Gongguo [1 ]
Wakin, Michael B. [1 ]
机构
[1] Colorado Sch Mines, Dept Elect Engn, Golden, CO 80401 USA
关键词
Low-rank matrix optimization; matrix sensing; nonconvex optimization; optimization geometry; strict saddle; ALGORITHM; RECOVERY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers the minimization of a general objective function f(X) over the set of non-square n x m matrices where the optimal solution X ? is low-rank. To reduce the computational burden, we factorize the variable X into a product of two smaller matrices and optimize over these two matrices instead of X. We analyze the global geometry for a general and yet well-conditioned objective function f(X) whose restricted strong convexity and restricted strong smoothness constants are comparable. In particular, we show that the reformulated objective function has no spurious local minima and obeys the strict saddle property. These geometric properties imply that a number of iterative optimization algorithms (such as gradient descent) can provably solve the factored problem with global convergence.
引用
下载
收藏
页码:1275 / 1279
页数:5
相关论文
共 50 条
  • [41] Enhanced Low-Rank Matrix Approximation
    Parekh, Ankit
    Selesnick, Ivan W.
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (04) : 493 - 497
  • [42] DECENTRALIZED LOW-RANK MATRIX COMPLETION
    Ling, Qing
    Xu, Yangyang
    Yin, Wotao
    Wen, Zaiwen
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2925 - 2928
  • [43] Quantization for low-rank matrix recovery
    Lybrand, Eric
    Saab, Rayan
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (01) : 161 - 180
  • [44] Sensitivity of low-rank matrix recovery
    Breiding, Paul
    Vannieuwenhoven, Nick
    NUMERISCHE MATHEMATIK, 2022, 152 (04) : 725 - 759
  • [45] A New Global Optimization Scheme for Quadratic Programs with Low-Rank Nonconvexity
    Cen, Xiaoli
    Xia, Yong
    INFORMS JOURNAL ON COMPUTING, 2021, 33 (04) : 1368 - 1383
  • [46] Sensitivity of low-rank matrix recovery
    Paul Breiding
    Nick Vannieuwenhoven
    Numerische Mathematik, 2022, 152 : 725 - 759
  • [47] LOW-RANK UPDATES OF MATRIX FUNCTIONS
    Beckermann, Bernhard
    Kressner, Daniel
    Schweitzer, Marcel
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2018, 39 (01) : 539 - 565
  • [48] Adaptive Low-Rank Matrix Completion
    Tripathi, Ruchi
    Mohan, Boda
    Rajawat, Ketan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (14) : 3603 - 3616
  • [49] Modifiable low-rank approximation to a matrix
    Barlow, Jesse L.
    Erbay, Hasan
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (10) : 833 - 860
  • [50] On Low-Rank Hankel Matrix Denoising
    Yin, Mingzhou
    Smith, Roy S.
    IFAC PAPERSONLINE, 2021, 54 (07): : 198 - 203