A non-deterministic semantics for tractable inference

被引:0
|
作者
Crawford, JM [1 ]
Etherington, DW [1 ]
机构
[1] I2 Technol, Irving, TX 75038 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unit resolution is arguably the most useful known algorithm for tractable reasoning in propositional logic. Intuitively, if one knows a, b, and a boolean AND b superset of c, then c should be an obvious implication. However, devising a tractable semantics that allows unit resolution has proven to be an elusive goal. We propose a 3-valued semantics for a tractable fragment of propositional logic that is inherently non-deterministic: the denotation of a formula is not uniquely determined by the denotation of the variables it contains. We show that this semantics yields a tractable, sound and complete, decision procedure. We generalize this semantics to a family of semantics, tied to Dalal's notion of intricacy, of increasing deductive power and computational complexity.
引用
收藏
页码:286 / 291
页数:6
相关论文
共 50 条
  • [31] NON-DETERMINISTIC FORTRAN
    COHEN, J
    CARTON, E
    COMPUTER JOURNAL, 1974, 17 (01): : 44 - 51
  • [32] Non-deterministic processors
    May, D
    Muller, HL
    Smart, NP
    INFORMATION SECURITY AND PRIVACY, PROCEEDINGS, 2001, 2119 : 115 - 129
  • [33] On Non-Deterministic Quantification
    Ferguson, Thomas Macaulay
    LOGICA UNIVERSALIS, 2014, 8 (02) : 165 - 191
  • [34] NON-DETERMINISTIC ALGORITHMS
    COHEN, J
    COMPUTING SURVEYS, 1979, 11 (02) : 79 - 94
  • [35] Modal Logic With Non-Deterministic Semantics: Part II-Quantified Case
    Coniglio, Marcelo E.
    Farinasdelcerro, Luis
    Peron, Newton Marques
    LOGIC JOURNAL OF THE IGPL, 2022, 30 (05) : 695 - 727
  • [36] Modal logic with non-deterministic semantics: Part I-Propositional case
    Coniglio, Marcelo E.
    Luis, Farinas Del Cerro
    Newton, Marques Peron
    LOGIC JOURNAL OF THE IGPL, 2020, 28 (03) : 281 - 315
  • [37] Effective Semantics for the Modal Logics K and KT via Non-deterministic Matrices
    Lahav, Ori
    Zohar, Yoni
    AUTOMATED REASONING, IJCAR 2022, 2022, 13385 : 468 - 485
  • [38] Deterministic and non-deterministic hypersubstitutions for algebraic systems
    Joomwong, Jintana
    Phusanga, Dara
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2016, 9 (02)
  • [39] Non-deterministic computations in ELAN
    Kirchner, H
    Moreau, PE
    RECENT TRENDS IN ALGEBRAIC DEVELOPMENT TECHNIQUES, 1999, 1589 : 168 - 182
  • [40] Non-deterministic inductive definitions
    van den Berg, Benno
    ARCHIVE FOR MATHEMATICAL LOGIC, 2013, 52 (1-2): : 113 - 135