Cyclic thermal shock resistance for MgAlON-MgO composites obtained with additions of spent MgO-C brick: Microstructure characteristics, thermal shock parameter and thermal shock mechanism

被引:5
|
作者
Cheng, Xiang [1 ]
Peng, Bo [1 ]
Zhang, Tianhua [1 ,2 ]
Guo, Min [1 ]
Cheng, Fangqin [3 ]
Zhang, Mei [1 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Met & Ecol Engn, State Key Lab Adv Met, Beijing 100083, Peoples R China
[2] Cent Res Inst Bldg Construct Co Ltd, MCC Grp, Beijing 100088, Peoples R China
[3] Shanxi Univ, Shanxi Collaborat Innovat Ctr High Value added Uti, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
Cyclic thermal shock resistance; Thermal shock parameter; MgAlON-MgO composites; Spent MgO-C brick; MAGNESIUM ALUMINUM OXYNITRIDE; SURFACE-ENERGY; CERAMICS; EXPANSION; BEHAVIOR; FRACTURE;
D O I
10.1016/j.ceramint.2022.06.251
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thermal shock parameters (R, R''', R'''' and R-st) of MgAlON-MgO composites obtained with additions of spent MgO-C brick were calculated using measured mechanical properties and thermal expansion coefficient, determining their resistance to fracture initiation and crack propagation. The cyclic thermal shock experiments of MgAlON-MgO composites performed from 1398 K to ambient temperature indicate that as number of thermal shock cycle increases, retained strength ratio of MgAlON and MgAlON-4.2 wt%MgO sharply decrease and then keep constant, while that of MgAlON-10.5 wt%MgO and MgAlON-15.7 wt%MgO slowly decrease. The reason for the difference is that MgAlON and MgAlON-4.2 wt%MgO show low value of R''' and R'''', and high value of R and R-st. Moreover, precipitation of impurity containing Fe may play a positive role in improvement of thermal shock resistance of MgAlON-MgO composites. MgAlON?4.2 wt%MgO has the maximum retained strength (55 MPa) even after 5 thermal shock cycles, which is expected to be used in the metallurgical industry.
引用
收藏
页码:29862 / 29872
页数:11
相关论文
共 50 条
  • [21] The effect of fused silica addition on thermal shock resistance of MgO material
    Mao, Xuesong
    Gu, Huazhi
    Wang, Houzhi
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2007, 36 (SUPPL. 2): : 358 - 361
  • [22] THERMAL-SHOCK RESISTANCE OF ZRO2-TOUGHENED MGO
    OKAMOTO, T
    IKUMA, Y
    SHIMAOKA, M
    SHIROTORI, T
    KOMATSU, W
    NIPPON SERAMIKKUSU KYOKAI GAKUJUTSU RONBUNSHI-JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 1989, 97 (08): : 812 - 817
  • [23] Study on phase transformation and thermal shock resistance of MgO-PSZ
    Liu, QG
    Kong, XG
    An, SL
    HIGH TEMPERATURE MATERIALS, PROCEEDINGS, 2002, 2002 (05): : 169 - 176
  • [24] Effect of MgO on thermal shock resistance of CaZrO3 ceramic
    Lang, Jie-Fu
    You, Jie-Gang
    Zhang, Xiao-Fang
    Luo, Xu-Dong
    Zheng, Shu-Ya
    CERAMICS INTERNATIONAL, 2018, 44 (18) : 22176 - 22180
  • [25] The effect of fused silica addition on thermal shock resistance of MgO material
    Mao Xuesong
    Gu Huazhi
    Wang Houzhi
    RARE METAL MATERIALS AND ENGINEERING, 2007, 36 : 358 - 361
  • [26] Enhanced Thermal Shock Resistance and Mechanical Characteristics of Microwave Sintered ZrB2-SiC-MgO Composites
    Sharma, Ankur
    Upadhyaya, Anish
    SILICON, 2025, 17 (02) : 449 - 463
  • [27] Influence of ZrSiO4-SiC reinforcement on the decarburization and thermal shock behavior of MgO-C refractories
    Zandi, Mohsen
    Manafi, Sahebali
    Limooei, Mohammad Bagher
    CERAMICS INTERNATIONAL, 2024, 50 (24) : 53761 - 53770
  • [29] Effect of CaCO3 addition on thermal shock resistance of MgO-ZrO2 composites
    Ling, Yongyi
    Tian, Xuekun
    Su, Kai
    Wang, Zihao
    Shen, Jiaxin
    Geng, Qiankun
    Wang, Hongsen
    Zhao, Fei
    Jia, Quanli
    Liu, Xinhong
    CERAMICS INTERNATIONAL, 2022, 48 (23) : 34308 - 34314
  • [30] Effect of phase evolution and microstructure on thermal shock resistance and hydration resistance of low-carbon MgO-C refractories: Al-TiB2 hybrid addition
    Liu, Jiangao
    Chen, Min
    Wang, Nan
    Sui, Xi
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 463