Enhancements in Conductivity and Thermal Stabilities of Polypyrrole/Polyurethane Nanoblends

被引:51
|
作者
Kotal, Moumita [1 ]
Srivastava, Suneel K. [1 ]
Paramanik, Bipattaran [1 ]
机构
[1] Indian Inst Technol, Dept Chem, Inorgan Mat & Nanocomposite Lab, Kharagpur 721302, W Bengal, India
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2011年 / 115卷 / 05期
关键词
ELECTRICAL-PROPERTIES; POLYMER BLENDS; POLYPYRROLE; POLYURETHANE; POLYANILINE; NANOCOMPOSITES; COMPOSITES; MORPHOLOGY; ACID; NANOCLAY;
D O I
10.1021/jp1081643
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The current work deals with enhancements in conductivity and thermal stabilities of thermoplastic polyurethane (TPU)/dodecylbenzenesulfonic acid doped polypyrrole (PPy.DBSA) nanoblends prepared by solution intercalation (SB) and in situ (IS) methods. It is observed that the electrical conductivity (sigma(dc)) of nanoblends is influenced by interaction between PPy.DBSA and TPU as well as homogeneous nanolevel dispersion and content of PPy.DBSA in TPU matrix. The maximum value of sigma(dc) has been found at 30 wt % PPy.DBSA for the SB (0.26 S cm(-1)) nanoblend due to the presence of the hexagonal network. The percolation threshold is attained at 2.5 wt % of PPy.DBSA for IS and SB nanoblends. The temperature variation of conductivity for different nanoblends follows one-dimensional variable range hopping (VRH) model. A significant improvement (32 degrees C) in thermal stability has been observed at 50% wt loss for SB nanoblend containing 30 wt % PPy.DBSA. The PL peak of the TPU nanoblend is red-shifted with increasing wt % of PPy.DBSA.
引用
收藏
页码:1496 / 1505
页数:10
相关论文
共 50 条
  • [31] Thermal conductivity of polyurethane sheets containing beryllium oxide nanofibers
    Hossain, Md Shakhawat
    Bhuiyan, Anamul Hoque
    Nakane, Koji
    RSC ADVANCES, 2022, 12 (46) : 30125 - 30134
  • [32] Numerical Predictions of the Effective Thermal Conductivity of the Rigid Polyurethane Foam
    Fang Wenzhen
    Tang Yuqing
    Zhang Hu
    Tao Wenquan
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2017, 32 (03): : 703 - 708
  • [33] The influence of nano-silica on the thermal conductivity of polyurethane foam
    Do, Thi Vi Vi
    Le, Van Hau Vo
    Thai, Ngoc Uyen Nguyen
    Dai, Hue Ngan
    Grillet, Anne-Cecile
    Thuc, Chi Nhan Ha
    JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (30)
  • [34] Simulation of High Thermal Conductivity Polyurethane DC Support Capacitor
    Sun, Yong
    Cui, Yanjie
    Sheng, Jie
    Zhou, Chunhong
    Sun, Jun
    Feng, Yu
    INTEGRATED FERROELECTRICS, 2024, 240 (02) : 304 - 315
  • [35] Thermal Conductivity and Flammability of Ulexite Filled Rigid Polyurethane Materials
    Gurlek, G.
    Altay, L.
    Sarikanat, M.
    ACTA PHYSICA POLONICA A, 2019, 135 (04) : 825 - 828
  • [36] COMPUTATIONAL EFFECTIVE THERMAL CONDUCTIVITY OF POLYURETHANE MIXED CELL FOAMS
    Hermama, Chaimaa
    Elmaliki, Anas
    Lahbabi, Salma
    INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS, MICROSCOPY AND ENERGY (ICAMME) 2019, 2020, 783
  • [37] Numerical Predictions of the Effective Thermal Conductivity of the Rigid Polyurethane Foam
    方文振
    TANG Yuqing
    ZHANG Hu
    陶文铨
    Journal of Wuhan University of Technology(Materials Science), 2017, 32 (03) : 703 - 708
  • [39] Thermal conductivity of polyurethane foam at liquid hydrogen temperature region
    Yamaguchi, M
    Takahashi, K
    Ohmori, T
    ADVANCES IN CRYOGENIC ENGINEERING, VOL 41, PTS A AND B, 1996, : 117 - 122
  • [40] KINETICS OF DEGRADATION OF THE ELECTRICAL-CONDUCTIVITY OF POLYPYRROLE UNDER THERMAL AGING
    THIEBLEMONT, JC
    PLANCHE, MF
    PETRESCU, C
    BOUVIER, JM
    BIDAN, G
    POLYMER DEGRADATION AND STABILITY, 1994, 43 (02) : 293 - 298