Deep Learning Based Emotion Recognition from Chinese Speech

被引:4
|
作者
Zhang, Weishan [1 ]
Zhao, Dehai [1 ]
Chen, Xiufeng [2 ]
Zhang, Yuanjie [1 ]
机构
[1] China Univ Petr, Dept Software Engn, 66 Changjiang West Rd, Qingdao 266580, Peoples R China
[2] Hisense TransTech Co Ltd, 16 Shandong Rd, Qingdao, Peoples R China
来源
关键词
D O I
10.1007/978-3-319-39601-9_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Emotion Recognition is challenging for understanding people and enhance human computer interaction experiences. In this paper, we explore deep belief networks (DBN) to classify six emotion status: anger, fear, joy, neutral status, sadness and surprise using different features fusion. Several kinds of speech features such as Mel frequency cepstrum coefficient (MFCC), pitch, formant, et al., were extracted and combined in different ways to reflect the relationship between feature combinations and emotion recognition performance. We adjusted different parameters in DBN to achieve the best performance when solving different emotions. Both gender dependent and gender independent experiments were conducted on the Chinese Academy of Sciences emotional speech database. The highest accuracy was 94.6 %, which was achieved using multi-feature fusion. The experiment results show that DBN based approach has good potential for practical usage of emotion recognition, and suitable multi-feature fusion will improve the performance of speech emotion recognition.
引用
下载
收藏
页码:49 / 58
页数:10
相关论文
共 50 条
  • [1] Deep Learning Based Human Emotion Recognition from Speech Signal
    Queen, M. P. Flower
    Sankar, S. Perumal
    Aurtherson, P. Babu
    Jeyakumar, P.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (06): : 119 - 124
  • [2] Deep learning and SVM-based emotion recognition from Chinese speech for smart affective services
    Zhang, Weishan
    Zhao, Dehai
    Chai, Zhi
    Yang, Laurence T.
    Liu, Xin
    Gong, Faming
    Yang, Su
    SOFTWARE-PRACTICE & EXPERIENCE, 2017, 47 (08): : 1127 - 1138
  • [3] Speech Emotion Recognition with Deep Learning
    Harar, Pavol
    Burget, Radim
    Dutta, Malay Kishore
    2017 4TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2017, : 137 - 140
  • [4] Deep learning based Affective Model for Speech Emotion Recognition
    Zhou, Xi
    Guo, Junqi
    Bie, Rongfang
    2016 INT IEEE CONFERENCES ON UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING AND COMMUNICATIONS, CLOUD AND BIG DATA COMPUTING, INTERNET OF PEOPLE, AND SMART WORLD CONGRESS (UIC/ATC/SCALCOM/CBDCOM/IOP/SMARTWORLD), 2016, : 841 - 846
  • [5] Feature Fusion of Speech Emotion Recognition Based on Deep Learning
    Liu, Gang
    He, Wei
    Jin, Bicheng
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT (IEEE IC-NIDC), 2018, : 193 - 197
  • [6] Emotion recognition from speech using deep learning on spectrograms
    Li, Xingguang
    Song, Wenjun
    Liang, Zonglin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (03) : 2791 - 2796
  • [7] A Study of Deep Belief Network Based Chinese Speech Emotion Recognition
    Chen, Bu
    Yin, Qian
    Guo, Ping
    2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 180 - 184
  • [8] Feature Learning via Deep Belief Network for Chinese Speech Emotion Recognition
    Zhang, Shiqing
    Zhao, Xiaoming
    Chuang, Yuelong
    Guo, Wenping
    Chen, Ying
    PATTERN RECOGNITION (CCPR 2016), PT II, 2016, 663 : 645 - 651
  • [9] Emotion Recognition in Speech with Deep Learning Architectures
    Erdal, Mehmet
    Kaechele, Markus
    Schwenker, Friedhelm
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, 2016, 9896 : 298 - 311
  • [10] Speech Emotion Recognition Using Deep Learning
    Alagusundari, N.
    Anuradha, R.
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 1, AITA 2023, 2024, 843 : 313 - 325