Superkicks in ultrarelativistic encounters of spinning black holes

被引:30
|
作者
Sperhake, Ulrich [1 ,2 ,3 ]
Berti, Emanuele [2 ,3 ]
Cardoso, Vitor [3 ,4 ]
Pretorius, Frans [5 ]
Yunes, Nicolas [5 ,6 ,7 ,8 ]
机构
[1] Fac Ciencies, Inst Ciencies Espai CSIC IEEC, E-08193 Barcelona, Spain
[2] CALTECH, Pasadena, CA 91125 USA
[3] Univ Mississippi, Dept Phys & Astron, University, MS 38677 USA
[4] Univ Tecn Lisboa, Inst Super Tecn, Dept Fis, CENTRA, P-1049 Lisbon, Portugal
[5] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[6] MIT, Dept Phys, Cambridge, MA 02139 USA
[7] MIT Kavli Inst, Cambridge, MA 02139 USA
[8] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW D | 2011年 / 83卷 / 02期
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
INITIAL DATA;
D O I
10.1103/PhysRevD.83.024037
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study ultrarelativistic encounters of two spinning, equal-mass black holes through simulations in full numerical relativity. Two initial data sequences are studied in detail: one that leads to scattering and one that leads to a grazing collision and merger. In all cases, the initial black hole spins lie in the orbital plane, a configuration that leads to the so-called superkicks. In astrophysical, quasicircular inspirals, such kicks can be as large as similar to 3000 km/s; here, we find configurations that exceed similar to 15 000 km/s. We find that the maximum recoil is to a good approximation proportional to the total amount of energy radiated in gravitational waves, but largely independent of whether a merger occurs or not. This shows that the mechanism predominantly responsible for the superkick is not related to merger dynamics. Rather, a consistent explanation is that the "bobbing'' motion of the orbit causes an asymmetric beaming of the radiation produced by the in-plane orbital motion of the binary, and the net asymmetry is balanced by a recoil. We use our results to formulate some conjectures on the ultimate kick achievable in any black hole encounter.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Quasicircular orbits for spinning binary black holes
    Pfeiffer, HP
    Teukolsky, SA
    Cook, GB
    PHYSICAL REVIEW D, 2000, 62 (10) : 1 - 11
  • [42] Evidence for rapidly spinning black holes in quasars
    Wang, Jian-Min
    Chen, Yan-Mei
    Ho, Luis C.
    McLure, Ross J.
    ASTROPHYSICAL JOURNAL, 2006, 642 (02): : L111 - L114
  • [43] Instability of ultra-spinning black holes
    Emparan, R
    Myers, RC
    JOURNAL OF HIGH ENERGY PHYSICS, 2003, (09):
  • [44] D-branes and spinning black holes
    Breckenridge, JC
    Myers, RC
    Peet, AW
    Vafa, C
    PHYSICS LETTERS B, 1997, 391 (1-2) : 93 - 98
  • [45] Coalescence remnant of spinning binary black holes
    Baker, J
    Campanelli, M
    Lousto, CO
    Takahashi, R
    PHYSICAL REVIEW D, 2004, 69 (02):
  • [46] Vacuum decays around spinning black holes
    Oshita, Naritaka
    Ueda, Kazushige
    Yamaguchi, Masahide
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (01)
  • [47] Spinning black holes as cosmic string factories
    Xing, Hengrui
    Levin, Yuri
    Gruzinov, Andrei
    Vilenkin, Alexander
    PHYSICAL REVIEW D, 2021, 103 (08)
  • [48] Observables and amplitudes for spinning particles and black holes
    Maybee, Ben
    O'Connell, Donal
    Vines, Justin
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (12)
  • [49] Charged spinning black holes as particle accelerators
    Wei, Shao-Wen
    Liu, Yu-Xiao
    Guo, Heng
    Fu, Chun-E
    PHYSICAL REVIEW D, 2010, 82 (10):
  • [50] Aligning spinning black holes and accretion discs
    King, A. R.
    Lubow, S. H.
    Ogilvie, G. I.
    Pringle, J. E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 363 (01) : 49 - 56