Milnor number equals Tjurina number for functions on space curves

被引:24
|
作者
Mond, D [1 ]
Van Straten, D
机构
[1] Univ Warwick, Coventry CV4 7AL, W Midlands, England
[2] Univ Mainz, Fachbereich Math 17, D-55099 Mainz, Germany
关键词
D O I
10.1112/S0024610700001320
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The equality of the Milnor number and Tjurina number for functions on space curve singularities, as conjectured recently by V. Goryunov, is proved. As a consequence, the discriminant in such a situation is a free divisor.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 50 条
  • [41] The Tjurina Number for Sebastiani–Thom Type Isolated Hypersurface Singularities
    Patricio Almirón
    Mediterranean Journal of Mathematics, 2023, 20
  • [42] On deformation with constant Milnor number and Newton polyhedron
    Abderrahmane, Ould M.
    MATHEMATISCHE ZEITSCHRIFT, 2016, 284 (1-2) : 167 - 174
  • [43] A bound for the Milnor number of plane curve singularities
    Ploski, Arkadiusz
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (05): : 688 - 693
  • [44] On deformation with constant Milnor number and Newton polyhedron
    Ould M. Abderrahmane
    Mathematische Zeitschrift, 2016, 284 : 167 - 174
  • [45] On the indeterminacy of Milnor's triple linking number
    Amundsen, Jonah
    Anderson, Eric
    Davis, Christopher William
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2020, 29 (09) : 4DUMNY
  • [46] BERNSTEIN POLYNOMIALS AND DEFORMATIONS PRESERVING MILNOR NUMBER
    GEANDIER, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 309 (13): : 831 - 834
  • [47] Families of polynomials with total Milnor number constant
    Vui, HH
    Zaharia, A
    MATHEMATISCHE ANNALEN, 1996, 304 (03) : 481 - 488
  • [48] ARC DISTANCE EQUALS LEVEL NUMBER
    Cho, Sangbum
    McCullough, Darryl
    Seo, Arim
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (08) : 2801 - 2807
  • [49] Families of ICIS with constant total Milnor number
    Carvalho, R. S.
    Nuno-Ballesteros, J. J.
    Orefice-Okamoto, B.
    Tomazella, J. N.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (13)
  • [50] DIFFERENCE INDEX OF VECTORFIELDS AND THE ENHANCED MILNOR NUMBER
    NEUMANN, WD
    RUDOLPH, L
    TOPOLOGY, 1990, 29 (01) : 83 - 100