Object spatial localization by fusing 3D point clouds and instance segmentation

被引:1
|
作者
Xia, Chenfei [1 ]
Han, Shoudong [1 ,2 ]
Pan, Xiaofeng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Minist Educ, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol Shenzhen, Res Inst, Shenzhen 518057, Peoples R China
来源
SN APPLIED SCIENCES | 2020年 / 2卷 / 03期
基金
中国国家自然科学基金;
关键词
3D Point Clouds; Binocular vision; Instance segmentation; Mask; Spatial localization;
D O I
10.1007/s42452-020-2210-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Real-time detection and acquisition of localization information of instance targets in real three-dimensional space plays an important role in application scenarios such as virtual reality simulation and digital twinning.The existing spatial localization methods without the aid of lidar and other equipment often have problems in restoring the real scale. In order to overcome this problem and achieve more accurate object spatial localization, an object spatial localization by fusing 3D point clouds and instance segmentation is proposed. This method obtains sparse 3D point cloud data by binocular stereo matching, which is used to describe the real scale and spatial location information of the object. Then uses deep learning method to perform monocular instance segmentation on the specific category target of interest, and the segmentation result is used as the front/background prior information to complete the coordinate correction and densification of the 3D point cloud data inside and outside the object contour. Compared with the unsupervised depth estimation methods based on deep learning, our method can quickly and accurately achieve the three-dimensional precise localization of the instance target and its various components in real-world scenes, and the accuracy in the indoor scene is more than 90%.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Joint Semantic-Instance Segmentation of 3D Point Clouds: Instance Separation and Semantic Fusion
    Zhong, Min
    Zeng, Gang
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 6616 - 6623
  • [12] Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds
    Engelmann, Francis
    Kontogianni, Theodora
    Hermans, Alexander
    Leibe, Bastian
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 716 - 724
  • [13] Attentional Keypoint Detection on Point Clouds for 3D Object Part Segmentation
    Zhou, Feng
    Zhang, Qi
    Zhu, He
    Liu, Shibo
    Jiang, Na
    Cai, Xingquan
    Qi, Qianfang
    Hu, Yong
    APPLIED SCIENCES-BASEL, 2023, 13 (23):
  • [14] A voxelized point clouds representation for object classification and segmentation on 3D data
    Abubakar Sulaiman Gezawa
    Zikirillahi A. Bello
    Qicong Wang
    Lei Yunqi
    The Journal of Supercomputing, 2022, 78 : 1479 - 1500
  • [15] A voxelized point clouds representation for object classification and segmentation on 3D data
    Gezawa, Abubakar Sulaiman
    Bello, Zikirillahi A.
    Wang, Qicong
    Lei Yunqi
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (01): : 1479 - 1500
  • [16] DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution
    He, Tong
    Shen, Chunhua
    van den Hengel, Anton
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 354 - 363
  • [17] On the Segmentation of 3D LIDAR Point Clouds
    Douillard, B.
    Underwood, J.
    Kuntz, N.
    Vlaskine, V.
    Quadros, A.
    Morton, P.
    Frenkel, A.
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011,
  • [18] TSPconv-Net: Transformer and Sparse Convolution for 3D Instance Segmentation in Point Clouds
    Ning, Xiaojuan
    Liu, Yule
    Ma, Yishu
    Lu, Zhiwei
    Jin, Haiyan
    Shi, Zhenghao
    Wang, Yinghui
    MATHEMATICS, 2024, 12 (18)
  • [19] Attention-Based Joint Semantic-Instance Segmentation of 3D Point Clouds
    Hao, Wen
    Wang, Hongxiao
    Liang, Wei
    Zhao, Minghua
    Xia, Zhaolin
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2022, 22 (02) : 19 - 28
  • [20] Semantic Labelling of 3D Point Clouds using Spatial Object Constraints
    Goldhoorn, Malgorzata
    Hartanto, Ronny
    2014 PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS THEORY AND APPLICATIONS (GRAPP 2014), 2014, : 513 - 518