Summation formula involving harmonic numbers

被引:0
|
作者
Sofo, Anthony [1 ]
机构
[1] Victoria Univ, Sch Sci & Engn, Melbourne, Vic 8001, Australia
关键词
EULER SUMS; SERIES REPRESENTATIONS; MATHEMATICAL CONSTANTS; BINOMIAL COEFFICIENTS;
D O I
10.1007/s10476-011-0103-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some identities of sums associated with harmonic numbers and binomial coefficients are developed. Integral representations and closed form identities of these sums are also given.
引用
收藏
页码:51 / 64
页数:14
相关论文
共 50 条
  • [31] Whipple-type 3F2-series and summation formulae involving generalized harmonic numbers
    Wei, Chuanan
    Wang, Xiaoxia
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (09) : 2385 - 2407
  • [32] Watson-type 3F2-series and summation formulae involving generalized harmonic numbers
    Wei, Chuanan
    Yu, Yuanbo
    Zhang, Huajun
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2018, 24 (09) : 1444 - 1472
  • [33] Identities involving harmonic and hyperharmonic numbers
    Kim, Dae San
    Kim, Taekyun
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [34] L-Series of Harmonic Maass Forms and a Summation Formula for Harmonic Lifts
    Diamantis, Nikolaos
    Lee, Min
    Raji, Wissam
    Rolen, Larry
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (18) : 15729 - 15765
  • [35] SOME IDENTITIES INVOLVING HARMONIC NUMBERS
    SPIESS, J
    MATHEMATICS OF COMPUTATION, 1990, 55 (192) : 839 - 863
  • [36] Identities involving harmonic and hyperharmonic numbers
    Dae San Kim
    Taekyun Kim
    Advances in Difference Equations, 2013
  • [37] Binomial sums involving harmonic numbers
    Gencev, Marian
    MATHEMATICA SLOVACA, 2011, 61 (02) : 215 - 226
  • [38] A SUMMATION FORMULA INVOLVING SIGMAK(N), K-)1
    NASIM, C
    CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (04): : 951 - &
  • [39] A formula for π2 involving Fibonacci numbers Solution
    Smith, Jason L.
    FIBONACCI QUARTERLY, 2020, 58 (02): : 186 - 186
  • [40] Several identities involving q-harmonic numbers by q-Chu-Vandermonde convolution formula
    Wang, Yunpeng
    Tong, Xinan
    ARS COMBINATORIA, 2015, 122 : 21 - 32