Numerical and experimental investigation of baffle plate arrangement on proton exchange membrane fuel cell performance

被引:141
|
作者
Wang, Xuefeng [1 ]
Qin, Yanzhou [1 ]
Wu, Shiyu [1 ]
Xiang Shangguan [1 ]
Zhang, Junfeng [1 ]
Yin, Yan [1 ]
机构
[1] Tianjin Univ, State Key Lab Engines, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Proton exchange membrane fuel cell; Staggered trapezoid baffle plate; Reactant uniformity; Water management; Pressure drop; FLOW-FIELD DESIGN; MODELING 2-PHASE FLOW; BIPOLAR PLATES; MASS-TRANSFER; LIQUID WATER; NET POWER; CHANNEL; TRANSPORT; PEMFC; GEOMETRY;
D O I
10.1016/j.jpowsour.2020.228034
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Reactant distribution and water management are critically important to the performance of proton exchange membrane fuel cell (PEMFC). The application of baffle plate is an effective way to improve reactant transport and water removal in the porous electrode of PEMFC. In this study, a three-dimensional multiphase PEMFC model is developed with Forchheimer's inertial effect in the porous electrode to better simulate the convective flow induced by the baffle plate, which is validated experimentally. Three kinds of flow field design including the conventional parallel flow field, parallel trapezoid baffle plate (PTBP) and staggered trapezoid baffle plate (STBP) flow fields are investigated both numerically and experimentally, on the PEMFC mass transport characteristics and performance. It is found that both the PTBP and STBP flow fields form the over-block-convection around the baffle plate which is beneficial to mass transfer from channel to electrode. The STBP flow field further forms the over-rib-convection (or cross flow) induced by a stable pressure gradient between the adjacent flow channels. The cross flow stem from the STBP arrangement further improves the uniformity of reactant distribution and removes the excess liquid water in the porous electrode, and hence enhances the PEMFC performance in a large range of operating conditions.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Characteristic simulation and numerical investigation of membrane electrode assembly in proton exchange membrane fuel cell
    Huang, Pei-Hsing
    Kuo, Jenn-Kun
    Chung, Shang-Shu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (88) : 37577 - 37586
  • [32] Experimental performance of proton exchange membrane fuel cell with novel flow fields and numerical investigation of water-gas transport enhancement
    Zhou, Yu
    Meng, Kai
    Chen, Wenshang
    Deng, Qihao
    Chen, Ben
    ENERGY CONVERSION AND MANAGEMENT, 2023, 281
  • [33] Performance analysis of a proton exchange membrane fuel cell with the stair arrangement of obstacles in the cathode channel
    Baharlou-Houreh, Nasser
    Masaeli, Navid
    Afshari, Ebrahim
    Mohammadzadeh, Kazem
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2023, 33 (12) : 3940 - 3966
  • [34] Numerical investigation on the performance of proton exchange membrane fuel cells with channel position variation
    Yang, Woo-joo
    Kang, Sin-jo
    Kim, Young-Bae
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2012, 36 (10) : 1051 - 1064
  • [35] Performance investigation of proton exchange membrane fuel cell with intersectant flow field
    Wen Dong-hui
    Yin Lin-zhi
    Piao Zhong-yu
    Lu Cong-da
    Li Gang
    Leng Qiao-hui
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 121 : 775 - 787
  • [36] Performance Investigation of High-Temperature Proton Exchange Membrane Fuel Cell
    Igbal, Mohamad Zaqwan Mohd
    Rosli, Masli Irwan
    Panuh, Dedikarni
    JURNAL KEJURUTERAAN, 2018, 1 (04): : 1 - 6
  • [37] Performance investigation on the bypass ejector for a proton exchange membrane fuel cell system
    Han, Jiquan
    Besagni, Giorgio
    Mereu, Riccardo
    Inzoli, Fabio
    Feng, Jianmei
    Peng, Xueyuan
    APPLIED THERMAL ENGINEERING, 2024, 241
  • [38] Performance investigation on the radial flow channel of proton exchange membrane fuel cell
    Yutao, Lian
    Minggang, Zheng
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2021, 43 (01) : 4491 - 4498
  • [39] An investigation into the cold start performance of proton exchange membrane fuel cell vehicles
    Zhou, Yibo
    Wang, Ju
    Yu, Dan
    Qiche Gongcheng/Automotive Engineering, 2014, 36 (10): : 1171 - 1174
  • [40] Experimental study of commercial size proton exchange membrane fuel cell performance
    Yan, Wei-Mon
    Wang, Xiao-Dong
    Lee, Duu-Jong
    Zhang, Xin-Xin
    Guo, Yi-Fan
    Su, Ay
    APPLIED ENERGY, 2011, 88 (01) : 392 - 396