Carleman estimates and controllability results for fully discrete approximations of 1D parabolic equations

被引:7
|
作者
Gonzalez Casanova, Pedro [1 ]
Hernandez-Santamaria, Victor [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
关键词
Carleman estimates; Fully discrete parabolic equations; Observability; Null controllability; ELLIPTIC-OPERATORS; NULL;
D O I
10.1007/s10444-021-09885-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a Carleman estimate for fully discrete approximations of one-dimensional parabolic operators in which the discrete parameters h and ot are connected to the large Carleman parameter. We use this estimate to obtain relaxed observability inequalities which yield, by duality, controllability results for fully discrete linear and semilinear parabolic equations.
引用
收藏
页数:71
相关论文
共 50 条
  • [21] Carleman estimates and controllability of linear stochastic heat equations
    Barbu, V
    Rascanu, A
    Tessitore, G
    APPLIED MATHEMATICS AND OPTIMIZATION, 2003, 47 (02): : 97 - 120
  • [22] Nonsmooth data error estimates for fully discrete finite element approximations of semilinear parabolic equations in Banach space
    Wang, Wansheng
    Li, Jinping
    Jin, Chengyu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 448
  • [23] Uniqueness properties for discrete equations and Carleman estimates
    Fernandez Bertolin, Aingeru
    Vega, Luis
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (11) : 4853 - 4869
  • [24] Carleman estimates and null controllability for boundary-degenerate parabolic operators
    Cannarsa, Piermarco
    Martinez, Partick
    Vancostenoble, Judith
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (3-4) : 147 - 152
  • [25] Carleman estimates for parabolic equations with nonhomogeneous boundary conditions
    Oleg Yu Imanuvilov
    Jean Pierre Puel
    Masahiro Yamamoto
    Chinese Annals of Mathematics, Series B, 2009, 30 : 333 - 378
  • [26] Carleman Estimates for Parabolic Equations with Nonhomogeneous Boundary Conditions
    Oleg Yu IMANUVILOV
    Jean Pierre PUEL
    Masahiro YAMAMOTO
    Chinese Annals of Mathematics, 2009, 30 (04) : 333 - 378
  • [27] Carleman estimates for parabolic equations with nonhomogeneous boundary conditions
    Imanuvilov, Oleg Yu
    Puel, Jean Pierre
    Yamamoto, Masahiro
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2009, 30 (04) : 333 - 378
  • [28] Carleman Estimates and Simultaneous Boundary Controllability of Uncoupled Wave Equations
    Carole Louis-Rose
    Louis Tebou
    Applied Mathematics & Optimization, 2023, 88
  • [29] Carleman Estimates and Simultaneous Boundary Controllability of Uncoupled Wave Equations
    Louis-Rose, Carole
    Tebou, Louis
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 88 (02):
  • [30] CARLEMAN ESTIMATE AND CONTROLLABILITY OF A TIME-DISCRETE COUPLED PARABOLIC SYSTEM
    Bhandari, Kuntal
    Dutta, Rajib
    Kumar, Manish
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2025,