Effects of simulation dimensionality on laser-driven electron acceleration and photon emission in hollow microchannel targets

被引:10
|
作者
Wang, Tao [1 ]
Blackman, David
Chin, Katherine
Arefiev, Alexey
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.104.045206
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using two-dimensional (2D) and three-dimensional (3D) kinetic simulations, we examine the impact of simulation dimensionality on the laser-driven electron acceleration and the emission of collimated gamma -ray beams from hollow microchannel targets. We demonstrate that the dimensionality of the simulations considerably influences the results of electron acceleration and photon generation owing to the variation of laser phase velocity in different geometries. In a 3D simulation with a cylindrical geometry, the acceleration process of electrons terminates early due to the higher phase velocity of the propagating laser fields; in contrast, 2D simulations with planar geometry tend to have prolonged electron acceleration and thus produce much more energetic electrons. The photon beam generated in the 3D setup is found to be more diverged accompanied with a lower conversion efficiency. Our paper concludes that the 2D simulation can qualitatively reproduce the features in 3D simulation, but for quantitative evaluations and reliable predictions to facilitate experiment designs 3D modeling is strongly recommended.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Hollow microspheres as targets for staged laser-driven proton acceleration
    Burza, M.
    Gonoskov, A.
    Genoud, G.
    Persson, A.
    Svensson, K.
    Quinn, M.
    McKenna, P.
    Marklund, M.
    Wahlstrom, C-G
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [2] Laser-driven electron acceleration in nanoplate array targets
    Knyazev, A. R.
    Zhang, Y.
    Krasheninnikov, S., I
    PHYSICAL REVIEW E, 2021, 103 (01)
  • [3] Nondipole effects in photon emission by laser-driven ions
    Chirila, CC
    Kylstra, NJ
    Potvliege, RM
    Joachain, CJ
    PHYSICAL REVIEW A, 2002, 66 (06): : 13
  • [4] Laser-driven ion acceleration with hollow laser beams
    Brabetz, C.
    Busold, S.
    Cowan, T.
    Deppert, O.
    Jahn, D.
    Kester, O.
    Roth, M.
    Schumacher, D.
    Bagnoud, V.
    PHYSICS OF PLASMAS, 2015, 22 (01)
  • [5] Laser-driven proton acceleration with nanostructured targets
    Vallieres, Simon
    Morabito, Antonia
    Veltri, Simona
    Sciscio, Massimiliano
    Barberio, Marianna
    Antici, Patrizio
    LASER ACCELERATION OF ELECTRONS, PROTONS, AND IONS IV, 2017, 10240
  • [6] A LASER-DRIVEN ELECTRON INJECTOR FOR LASER ACCELERATION EXPERIMENTS
    EBRAHIM, NA
    MARTIN, F
    JOURNAL OF APPLIED PHYSICS, 1990, 67 (11) : 6742 - 6746
  • [7] Characteristics of laser-driven electron acceleration in vacuum
    Wang, PX
    Ho, YK
    Yuan, XQ
    Kong, Q
    Cao, N
    Shao, L
    Sessler, AM
    Esarey, E
    Moshkovich, E
    Nishida, Y
    Yugami, N
    Ito, H
    Wang, JX
    Scheid, S
    JOURNAL OF APPLIED PHYSICS, 2002, 91 (02) : 856 - 866
  • [8] Optimizing laser-driven proton acceleration from overdense targets
    Novo, A. Stockem
    Kaluza, M. C.
    Fonseca, R. A.
    Silva, L. O.
    SCIENTIFIC REPORTS, 2016, 6
  • [9] Enhanced laser-driven proton acceleration using nanowire targets
    S. Vallières
    M. Salvadori
    A. Permogorov
    G. Cantono
    K. Svendsen
    Z. Chen
    S. Sun
    F. Consoli
    E. d’Humières
    C.-G. Wahlström
    P. Antici
    Scientific Reports, 11
  • [10] Optimizing laser-driven proton acceleration from overdense targets
    A. Stockem Novo
    M. C. Kaluza
    R. A. Fonseca
    L. O. Silva
    Scientific Reports, 6