ASYMPTOTIC ANALYSIS FOR EXTREME EIGENVALUES OF PRINCIPAL MINORS OF RANDOM MATRICES

被引:2
|
作者
Cai, T. Tony [1 ]
Jiang, Tiefeng [2 ]
Li, Xiaoou [2 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
来源
ANNALS OF APPLIED PROBABILITY | 2021年 / 31卷 / 06期
关键词
Random matrix; extremal eigenvalues; maximum of random variables; minimum of random variables; RESTRICTED ISOMETRY PROPERTY; STATISTICAL-THEORY; ENERGY-LEVELS; LARGEST ENTRIES; DISTRIBUTIONS; RECOVERY; LIMIT; UNIVERSALITY; ENSEMBLES; COHERENCE;
D O I
10.1214/21-AAP1668
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a standard white Wishart matrix with parameters n and p. Motivated by applications in high-dimensional statistics and signal processing, we perform asymptotic analysis on the maxima and minima of the eigenvalues of all the m x m principal minors, under the asymptotic regime that n, p, m go to infinity. Asymptotic results concerning extreme eigenvalues of principal minors of real Wigner matrices are also obtained. In addition, we discuss an application of the theoretical results to the construction of compressed sensing matrices, which provides insights to compressed sensing in signal processing and high-dimensional linear regression in statistics.
引用
下载
收藏
页码:2953 / 2990
页数:38
相关论文
共 50 条