Mean-shift based object detection and clustering from high resolution remote sensing imagery

被引:0
|
作者
SushmaLeela, T.
chandrakanth, R.
Saibaba, J.
Varadan, Geeta
Mohan, Sambhu S.
机构
关键词
mean shift; PAMS; segmentation; shape features; clustering; Agglomerative;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detection from remote sensing images has inherent difficulties due to cluttered backgrounds and noisy regions from the urban area in high resolution images. Detection of objects with regular geometry, such as circles from an image uses strict feature based detection. Using region based segmentation techniques such as K-Means has the inherent disadvantage of knowing the number of classes apriori. Contour based techniques such as Active contour models, sometimes used in remote sensing also has the problem of knowing the approximate location of the region and also the noise will hinder its performance. A template based approach is not scale and rotation invariant with different resolutions and using multiple templates is not a feasible solution. This paper proposes a methodology for object detection based on mean shift segmentation and non-parametric clustering. Mean shift is a non-parametric segmentation technique, which in its inherent nature is able to segment regions according to the desirable properties like spatial and spectral radiance of the object. A prior knowledge about the shape of the object is used to extract the desire object. A hierarchical clustering method is adopted to cluster the objects having similar shape and spatial features. The proposed methodology is applied on high resolution EO images to extract circular objects. The methodology found to be better and robust even in the cluttered and noisy background. The results are also evaluated using different evaluation measures.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] SuperYOLO: Super Resolution Assisted Object Detection in Multimodal Remote Sensing Imagery
    Zhang, Jiaqing
    Lei, Jie
    Xie, Weiying
    Fang, Zhenman
    Li, Yunsong
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [22] Sparse anchoring guided high-resolution capsule network for geospatial object detection from remote sensing imagery
    Yu, Yongtao
    Wang, Jun
    Qiang, Hao
    Jiang, Mingxin
    Tang, E.
    Yu, Changhui
    Zhang, Yongjun
    Li, Jonathan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 104
  • [23] NOVEL OBJECT DETECTION IN REMOTE SENSING IMAGERY
    Du, Dawei
    Funk, Christopher
    Doctor, Katarina
    Hoogs, Anthony
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5798 - 5801
  • [24] An Efficient and Robust Integrated Geospatial Object Detection Framework for High Spatial Resolution Remote Sensing Imagery
    Han, Xiaobing
    Zhong, Yanfei
    Zhang, Liangpei
    REMOTE SENSING, 2017, 9 (07)
  • [25] A Disparity Refinement Algorithm for Satellite Remote Sensing Images Based on Mean-Shift Plane Segmentation
    Li, Zhihui
    Liu, Jiaxin
    Yang, Yang
    Zhang, Jing
    REMOTE SENSING, 2021, 13 (10)
  • [26] Novel land cover classification based on mean shift segmentation for high resolution remote sensing
    Mo, Deng-Kui
    Lin, Hui
    Lv, Yong
    Sun, Hua
    Xiong, Yu-Jiu
    Liu, Tai-long
    Proceedings of 2006 International Conference on Artificial Intelligence: 50 YEARS' ACHIEVEMENTS, FUTURE DIRECTIONS AND SOCIAL IMPACTS, 2006, : 716 - 719
  • [27] Automated object recognition in high-resolution optical remote sensing imagery
    Yao, Yazhou
    Chen, Tao
    Bi, Hanbo
    Cai, Xinhao
    Pei, Gensheng
    Yang, Guoye
    Yan, Zhiyuan
    Sun, Xian
    Xu, Xing
    Zhang, Hai
    NATIONAL SCIENCE REVIEW, 2023, 10 (06)
  • [28] Object detection methods for high resolution remote sensing images
    Liang, Haixiang
    Tang, Yanhui
    Wang, Yuqing
    Zhang, Dehao
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2024, 39 (10) : 1350 - 1360
  • [29] Fast Segmentation Algorithm of High Resolution Remote Sensing Image Based on Multiscale Mean Shift
    Wang Lei-guang
    Zheng Chen
    Lin Li-yu
    Chen Rong-yuan
    Mei Tian-can
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31 (01) : 177 - 183
  • [30] Automated object recognition in high-resolution optical remote sensing imagery
    Yazhou Yao
    Tao Chen
    Hanbo Bi
    Xinhao Cai
    Gensheng Pei
    Guoye Yang
    Zhiyuan Yan
    Xian Sun
    Xing Xu
    Hai Zhang
    National Science Review, 2023, 10 (06) : 38 - 41