DATA CLUSTERING USING MATRIX FACTORIZATION TECHNIQUES FOR WIRELESS PROPAGATION MAP RECONSTRUCTION

被引:0
|
作者
Chen, Junting [1 ]
Mitra, Urbashi [1 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA
关键词
Clustering; matrix factorization; unimodal; nonparametric estimation; COMPLETION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper develops an efficient data clustering technique by transforming and compressing the measurement data to a low-dimensional feature matrix, based on which, matrix factorization techniques can be applied to extract the key parameters for data clustering. For the application of wireless propagation map reconstruction, a theoretical result is developed to justify that the feature matrix is a composite of several unimodal matrices, each containing key parameters for an individual propagation region. As a result, instead of iterating with N data points at each step, the proposed scheme provides a low complexity online solution for data clustering based on the feature matrix with dimension much smaller than N.
引用
收藏
页码:856 / 860
页数:5
相关论文
共 50 条
  • [31] Matrix Factorization Techniques for Analysis of Imaging Mass Spectrometry Data
    Siy, Peter W.
    Moffitt, Richard A.
    Parry, R. Mitchell
    Chen, Yanfeng
    Liu, Ying
    Sullards, M. Cameron
    Merrill, Alfred H., Jr.
    Wang, May D.
    8TH IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING, VOLS 1 AND 2, 2008, : 875 - +
  • [32] Search results clustering using Nonnegative Matrix Factorization (NMF)
    Abdulla, Hussam Dahwa
    Polovincak, Martin
    Snasel, Vaclav
    2009 INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, 2009, : 320 - 323
  • [33] Search results clustering using Nonnegative Matrix Factorization (NMF)
    Abdulla, Hussam Dahwa
    Snasel, Vaclav
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON ENVIRONMENTAL AND COMPUTER SCIENCE, 2009, : 101 - 104
  • [34] A joint matrix factorization and clustering scheme for irregular time series data
    He, Shiming
    Guo, Meng
    Li, Zhuozhou
    Lei, Ying
    Zhou, Siyuan
    Xie, Kun
    Xiong, Neal N.
    INFORMATION SCIENCES, 2023, 644
  • [35] Adaptive local learning regularized nonnegative matrix factorization for data clustering
    Sheng, Yongpan
    Wang, Meng
    Wu, Tianxing
    Xu, Han
    APPLIED INTELLIGENCE, 2019, 49 (06) : 2151 - 2168
  • [36] Sparse non-negative matrix factorization for uncertain data clustering
    Chen, Danyang
    Wang, Xiangyu
    Xu, Xiu
    Zhong, Cheng
    Xu, Jinhui
    INTELLIGENT DATA ANALYSIS, 2022, 26 (03) : 615 - 636
  • [37] Adaptive local learning regularized nonnegative matrix factorization for data clustering
    Yongpan Sheng
    Meng Wang
    Tianxing Wu
    Han Xu
    Applied Intelligence, 2019, 49 : 2151 - 2168
  • [38] Graph regularized nonnegative matrix factorization with label discrimination for data clustering
    Xing, Zhiwei
    Ma, Yingcang
    Yang, Xiaofei
    Nie, Feiping
    NEUROCOMPUTING, 2021, 440 : 297 - 309
  • [39] Constrained Nonnegative Matrix Factorization Based on Label Propagation for Data Representation
    Liu J.
    Wang Y.
    Ma J.
    Han D.
    Huang Y.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (02): : 590 - 601
  • [40] Data-driven approaches on pair distribution function data: matrix factorization and clustering
    Zhang, Shuyan
    Gong, Jie
    Jayan, B. Reeja
    McGaughey, Alan J. H.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C190 - C190