A HAUSDORFF-YOUNG INEQUALITY FOR LOCALLY COMPACT QUANTUM GROUPS

被引:15
|
作者
Cooney, Tom [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
关键词
Fourier transform; locally compact quantum group; noncommutative L(p)-space; VONNEUMANN ALGEBRA; SPACES;
D O I
10.1142/S0129167X10006677
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a locally compact abelian group with dual group (G) over cap. The Hausdorff-Young theorem states that if f is an element of L(p)(G), where 1 <= p <= 2, then its Fourier transform F(p)(f) belongs to L(q)((G) over cap) (where (1/p) + (1/q) = 1) and parallel to F(p)(f)parallel to(q) <= parallel to f parallel to(p). Kunze and Terp extended this to unimodular and locally compact groups, respectively. We further generalize this result to an arbitrary locally compact quantum group G by defining a Fourier transform F(p) : L(p)(G) -> L(q)((G) over cap) and showing that this Fourier transform satisfies the Hausdorff-Young inequality.
引用
下载
收藏
页码:1619 / 1632
页数:14
相关论文
共 50 条
  • [1] Vector-valued Hausdorff-Young inequality on compact groups
    García-Cuerva, J
    Parcet, J
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2004, 88 : 796 - 816
  • [2] The Hausdorff-Young inequality on Lie groups
    Cowling, Michael G.
    Martini, Alessio
    Mueller, Detlef
    Parcet, Javier
    MATHEMATISCHE ANNALEN, 2019, 375 (1-2) : 93 - 131
  • [3] THE HAUSDORFF-YOUNG INEQUALITY FOR ORLICZ SPACES ON COMPACT HYPERGROUPS
    Kumar, Vishvesh
    Sarma, Ritumoni
    COLLOQUIUM MATHEMATICUM, 2020, 160 (01) : 41 - 51
  • [4] Hausdorff-Young inequality for Orlicz spaces on compact homogeneous manifolds
    Kumar, Vishvesh
    Ruzhansky, Michael
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (02): : 266 - 276
  • [5] An application of the Hausdorff-Young inequality
    Tomovski, Z
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 1998, 1 (04): : 527 - 532
  • [6] YOUNG'S INEQUALITY FOR LOCALLY COMPACT QUANTUM GROUPS
    Liu, Zhengwei
    Wang, Simeng
    Wu, Jinsong
    JOURNAL OF OPERATOR THEORY, 2017, 77 (01) : 109 - 131
  • [7] Optimal extension of the Hausdorff-Young inequality
    Mockenhaupt, G.
    Ricker, W. J.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 620 : 195 - 211
  • [8] The Hausdorff-Young Inequality and Freud weights
    Calderon, C. P.
    Torchinsky, A.
    ACTA MATHEMATICA HUNGARICA, 2023, 170 (02) : 681 - 703
  • [9] On the vector valued Hausdorff-Young inequality
    Andersson, ME
    ARKIV FOR MATEMATIK, 1998, 36 (01): : 1 - 30
  • [10] A HAUSDORFF-YOUNG INEQUALITY FOR MEASURED GROUPOIDS
    Boivin, Patricia
    Renault, Jean
    VON NEUMANN ALGEBRAS IN SIBIU, CONFERENCE PROCEEDINGS, 2008, : 9 - 19