Fuzzing With Optimized Grammar-Aware Mutation Strategies

被引:4
|
作者
Deng, Jiale [1 ,2 ]
Zhu, Xiaogang [3 ]
Xiao, Xi [2 ,4 ]
Wen, Sheng [4 ]
Li, Qing [4 ,5 ]
Xia, Shutao [2 ,4 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610017, Peoples R China
[2] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[3] Swinburne Univ Technol, Dept Comp Sci & Software Engn, Melbourne, Vic 3000, Australia
[4] Peng Cheng Lab, Shenzhen 518066, Peoples R China
[5] Southern Univ Sci & Technol, Inst Future Networks, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzing; Grammar; Schedules; Production; XML; Testing; Syntactics; Computer security; software testing; grammar-based fuzzing;
D O I
10.1109/ACCESS.2021.3093904
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fuzzing is a widely used technique to discover vulnerabilities in software. However, for programs requiring highly structured inputs, the byte-based mutation strategies in existing fuzzers have difficulties in generating valid inputs. To resolve this challenge, Grammar-Based Fuzzing (GBF) utilizes existing grammar specifications to generate new inputs. Some GBFs perform mutation based on Abstract Syntax Trees (ASTs), which can generate inputs conforming to grammars. However, the existing GBFs neglect using feedback to optimize mutation strategies, and blindly generate inputs without considering the effectiveness of those inputs. In this paper, we use the power schedule and the subtree pool to optimize mutation strategies. Specifically, we first translate input files into ASTs, and extract subtrees from ASTs into a subtree pool. Then, we optimize the power schedule on AST nodes based on a probabilistic model. That is, we adaptively determine the time budget for mutating an AST node. Finally, we replace AST nodes along with their subtrees using the ones we select from the subtree pool. We implement a fuzzing tool to demonstrate our strategies. The experiment results show that our method outperforms the state-of-the-art methods in fuzzing efficiency.
引用
收藏
页码:95061 / 95071
页数:11
相关论文
共 50 条
  • [1] Superion: Grammar-Aware Greybox Fuzzing
    Wang, Junjie
    Chen, Bihuan
    Wei, Lei
    Liu, Yang
    2019 IEEE/ACM 41ST INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2019), 2019, : 724 - 735
  • [2] Gramatron: Effective Grammar-Aware Fuzzing
    Srivastava, Prashast
    Payer, Mathias
    ISSTA '21: PROCEEDINGS OF THE 30TH ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS, 2021, : 244 - 256
  • [3] Grammar-aware test case trimming for efficient hybrid fuzzing☆
    Zhao, Yiru
    Gao, Long
    Wan, Qihan
    Zhao, Lei
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (01)
  • [4] A Novel Coverage-Guided Greybox Fuzzing Method based on Grammar-Aware with Particle Swarm Optimization
    Wang, Shengran
    Chen, Jinfu
    Cai, Saihua
    Zhang, Chi
    Chen, Haibo
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY, AND SECURITY COMPANION, QRS-C, 2022, : 780 - 781
  • [5] A Grammar-Aware Pointer Network for Abstractive Summarization
    Zhou, Yinghua
    Cao, Fang
    Cao, Yangyang
    Yang, Ning
    Li, Zhen
    MODERN INDUSTRIAL IOT, BIG DATA AND SUPPLY CHAIN, IIOTBDSC 2020, 2021, 218 : 207 - 216
  • [6] Grammar-aware sentence classification on quantum computers
    Meichanetzidis, Konstantinos
    Toumi, Alexis
    de Felice, Giovanni
    Coecke, Bob
    QUANTUM MACHINE INTELLIGENCE, 2023, 5 (01)
  • [7] PAMOJA: A component framework for grammar-aware engineering
    Ssanyu, Jackline
    Bainomugisha, Engineer
    Kanagwa, Benjamin
    SCIENCE OF COMPUTER PROGRAMMING, 2021, 211
  • [8] Grammar-aware sentence classification on quantum computers
    Konstantinos Meichanetzidis
    Alexis Toumi
    Giovanni de Felice
    Bob Coecke
    Quantum Machine Intelligence, 2023, 5
  • [9] Grammar-aware Parallelization for Scalable XPath Querying
    Jiang, Lin
    Zhao, Zhijia
    ACM SIGPLAN NOTICES, 2017, 52 (08) : 371 - 383
  • [10] Grammar-aware phrase dataset generated using a novel python']python package
    Gemechu, Ebisa A.
    Kanagachidambaresan, G. R.
    DATA IN BRIEF, 2023, 48