K4-Free Graphs with No Odd Hole: Even Pairs and the Circular Chromatic Number

被引:2
|
作者
Zwols, Yori [1 ]
机构
[1] Columbia Univ, Dept Ind Engn & Operat Res, New York, NY 10027 USA
关键词
forbidden induced subgraphs; circular chromatic number; even pairs; odd holes;
D O I
10.1002/jgt.20482
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An odd hole in a graph is an induced cycle of odd length at least five. In this article we show that every imperfect K-4-free graph with no odd hole either is one of two basic graphs, or has an even pair or a clique cutset. We use this result to show that every K-4-free graph with no odd hole has circular chromatic number strictly smaller than 4. We also exhibit a sequence {H-n} of such graphs with lim(n ->infinity) chi(c)(H-n)=4. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 65: 303-322, 2010
引用
收藏
页码:303 / 322
页数:20
相关论文
共 50 条
  • [41] Circular chromatic number of Kneser graphs
    Hajiabolhassan, H
    Zhu, X
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 88 (02) : 299 - 303
  • [42] Circular chromatic number and Mycielski graphs
    Liu, HM
    ACTA MATHEMATICA SCIENTIA, 2006, 26 (02) : 314 - 320
  • [43] Circular chromatic number of signed graphs
    Naserasr, Reza
    Wang, Zhouningxin
    Zhu, Xuding
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [44] Circular chromatic number and mycielski graphs
    Fan, GH
    COMBINATORICA, 2004, 24 (01) : 127 - 135
  • [45] Chromatic Number of ISK4-Free Graphs
    Ngoc Khang Le
    Graphs and Combinatorics, 2017, 33 : 1635 - 1646
  • [46] Chromatic Number of ISK4-Free Graphs
    Le, Ngoc Khang
    GRAPHS AND COMBINATORICS, 2017, 33 (06) : 1635 - 1646
  • [47] The maximum number of K3-free and K4-free edge 4-colorings
    Pikhurko, Oleg
    Yilma, Zelealem B.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 85 : 593 - 615
  • [48] On the chromatic number of 2K2-free graphs
    Brause, Christoph
    Randerath, Bert
    Schiermeyer, Ingo
    Vumar, Elkin
    DISCRETE APPLIED MATHEMATICS, 2019, 253 : 14 - 24
  • [49] THE FRACTIONAL CHROMATIC NUMBER OF K\bfDelta-FREE GRAPHS
    Hu, Xiaolan
    Peng, Xing
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (04) : 2486 - 2507
  • [50] Totally odd K4-subdivisions in 4-chromatic graphs
    Thomassen, C
    COMBINATORICA, 2001, 21 (03) : 417 - 443