A LIOUVILLE THEOREM FOR INDEFINITE FRACTIONAL DIFFUSION EQUATIONS AND ITS APPLICATION TO EXISTENCE OF SOLUTIONS

被引:4
|
作者
Barrios, Begona [1 ]
Del Pezzo, Leandro [2 ]
Garcia-Melian, Jorge [1 ,3 ]
Quaas, Alexander [4 ]
机构
[1] Univ La Laguna, Dept Anal Matemat, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38200, Spain
[2] Univ Torcuato Tella, CONICET, Dept Matemat & Estadist, Ave Figueroa Alcorta 7350,C1428BCW, Ca De Buenos Aires, Argentina
[3] Univ La Laguna, Inst Univ Estudios Avanzados IUdEA Fis Atom Mol &, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38200, Spain
[4] Univ Tecn Federico Santa Maria, Dept Matemat, Casilla 5-110,Avda Espana, Valparaiso 1680, Chile
关键词
Liouville theorem; fractional Laplacian; positive solution; a priori bounds; SEMILINEAR ELLIPTIC-EQUATIONS; MOVING PLANES; R-N; REGULARITY; NONLINEARITIES; CLASSIFICATION; LAPLACIAN; SIGN;
D O I
10.3934/dcds.2017248
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we obtain a Liouville theorem for positive, bounded solutions of the equation (Delta)(s) u = h (x (N)) f (u) in R-N where (-Delta)(s) stands for the fractional Laplacian with s is an element of (0; 1), and the functions h and f are nondecreasing. The main feature is that the function h changes sign in R, therefore the problem is sometimes termed as indefinite. As an application we obtain a priori bounds for positive solutions of some boundary value problems, which give existence of such solutions by means of bifurcation methods.
引用
收藏
页码:5731 / 5746
页数:16
相关论文
共 50 条
  • [21] On the Application of Measure of Noncompactness to the Existence of Solutions for Fractional Differential Equations
    Agarwal, Ravi P.
    Benchohra, Mouffak
    Seba, Djamila
    RESULTS IN MATHEMATICS, 2009, 55 (3-4) : 221 - 230
  • [22] Non-existence of Global Solutions to a System of Fractional Diffusion Equations
    Kirane, M.
    Ahmad, B.
    Alsaedi, A.
    Al-Yami, M.
    ACTA APPLICANDAE MATHEMATICAE, 2014, 133 (01) : 235 - 248
  • [23] Non-existence of Global Solutions to a System of Fractional Diffusion Equations
    M. Kirane
    B. Ahmad
    A. Alsaedi
    M. Al-Yami
    Acta Applicandae Mathematicae, 2014, 133 : 235 - 248
  • [24] Existence of Mild Solutions to Delay Diffusion Equations with Hilfer Fractional Derivative
    Jin, Yuhang
    He, Wenchang
    Wang, Luyao
    Mu, Jia
    FRACTAL AND FRACTIONAL, 2024, 8 (07)
  • [25] Existence of solutions for time fractional order diffusion equations on weighted graphs
    Wattanagul, Kaninpat
    Ngiamsunthorn, Parinya Sa
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 2219 - 2232
  • [26] Existence of Peregrine type solutions in fractional reaction-diffusion equations
    Besteiro, Agustin
    Rial, Diego
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (09) : 1 - 9
  • [27] Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications
    Al-Refai, Mohammed
    Luchko, Yuri
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (02) : 483 - 498
  • [28] Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications
    Mohammed Al-Refai
    Yuri Luchko
    Fractional Calculus and Applied Analysis, 2014, 17 : 483 - 498
  • [29] A Liouville theorem for a class of reaction-diffusion systems with fractional diffusion
    Guo, Jong-Shenq
    Shimojo, Masahiko
    APPLIED MATHEMATICS LETTERS, 2022, 133
  • [30] Existence of entire solutions to a fractional Liouville equation in Rn
    Hyder, Ali
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2016, 27 (01) : 1 - 14