Study on DC Pollution Flashover Performance of Various Types of Long String Insulators Under Low Atmospheric Pressure Conditions
被引:43
|
作者:
Zhang, Zhijin
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R ChinaChongqing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R China
Zhang, Zhijin
[1
]
Jiang, Xinliang
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R ChinaChongqing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R China
Jiang, Xinliang
[1
]
Chao, Yafeng
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R ChinaChongqing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R China
Chao, Yafeng
[1
]
Chen, Ling
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R ChinaChongqing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R China
Chen, Ling
[1
]
Sun, Caixin
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R ChinaChongqing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R China
Sun, Caixin
[1
]
Hu, Jianlin
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R ChinaChongqing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R China
Hu, Jianlin
[1
]
机构:
[1] Chongqing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R China
In this paper, the dc pollution flashover performance of various types of porcelain, glass, and composite insulators is investigated. It also presents analysis of the dc flashover process of polluted insulator string at high altitude using insight from high-speed photography. The research results indicate that the relationship between the dc pollution flashover voltage and the string length of insulators is basically linear, the characteristic exponents describing the influence degree of air pressure on pollution flashover voltage vary between 0.35 and 0.77 and are related to the insulator types and pollution degree, etc., the characteristic exponents describing the influence degree of pollution on flashover voltage vary between 0.24 and 0.36 and are related to the insulator types and air pressure, etc. Based on the flashover phenomena using the insight from high-speed photography, a new physical model explaining the flashover mechanism for a polluted insulator string at high altitude is introduced, which can be expressed as an electrical circuit consisting of a surface arc of length x(1) and air-gap arc of length x(2) in series with a resistance representing the wet pollution layer. In addition, the exponent n describing the influence degree of air pressure on flashover voltage for the polluted insulator is discussed.