Error estimates for interpolation of rough data using the scattered shifts of a radial basis function

被引:3
|
作者
Brownlee, RA [1 ]
机构
[1] Univ Leicester, Dept Math, Leicester LE1 7RH, Leics, England
关键词
scattered data interpolation; radial basis functions; error estimates; rough functions;
D O I
10.1007/s11075-004-3620-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The error between appropriately smooth functions and their radial basis function interpolants, as the interpolation points fill out a bounded domain in R-d stop, is a well studied artifact. In all of these cases, the analysis takes place in a natural function space dictated by the choice of radial basis function - the native space. The native space contains functions possessing a certain amount of smoothness. This paper establishes error estimates when the function being interpolated is conspicuously rough.
引用
收藏
页码:57 / 68
页数:12
相关论文
共 50 条
  • [41] Improved estimates for condition numbers of radial basis function interpolation matrices
    Diederichs, Benedikt
    Iske, Armin
    JOURNAL OF APPROXIMATION THEORY, 2019, 238 : 38 - 51
  • [42] Hybrid Gaussian-cubic radial basis functions for scattered data interpolation
    Mishra, Pankaj K.
    Nath, Sankar K.
    Sen, Mrinal K.
    Fasshauer, Gregory E.
    COMPUTATIONAL GEOSCIENCES, 2018, 22 (05) : 1203 - 1218
  • [43] NORM ESTIMATES FOR THE INVERSES OF A GENERAL-CLASS OF SCATTERED-DATA RADIAL-FUNCTION INTERPOLATION MATRICES
    NARCOWICH, FJ
    WARD, JD
    JOURNAL OF APPROXIMATION THEORY, 1992, 69 (01) : 84 - 109
  • [44] Hybrid Gaussian-cubic radial basis functions for scattered data interpolation
    Pankaj K. Mishra
    Sankar K. Nath
    Mrinal K. Sen
    Gregory E. Fasshauer
    Computational Geosciences, 2018, 22 : 1203 - 1218
  • [45] Scattered data modelling using radial basis functions
    Iske, A
    TUTORIALS ON MULTIRESOLUTION IN GEOMETRIC MODELLING, 2002, : 205 - 242
  • [46] Radial basis function approximation of noisy scattered data on the sphere
    Hesse, Kerstin
    Sloan, Ian H.
    Womersley, Robert S.
    NUMERISCHE MATHEMATIK, 2017, 137 (03) : 579 - 605
  • [47] Radial basis function approximation of noisy scattered data on the sphere
    Kerstin Hesse
    Ian H. Sloan
    Robert S. Womersley
    Numerische Mathematik, 2017, 137 : 579 - 605
  • [48] Image Deformation using Radial Basis Function Interpolation
    Kwon, Jung Hye
    Lee, Byung Gook
    Yoon, Jungho
    Lee, JoonJae
    WSCG 2009, POSTER PROCEEDINGS, 2009, : 9 - +
  • [49] Referenceless Thermometry using Radial Basis Function Interpolation
    Agnello, Luca
    Militello, Carmelo
    Gagliardo, Cesare
    Vitabile, Salvatore
    2014 WORLD SYMPOSIUM ON COMPUTER APPLICATIONS & RESEARCH (WSCAR), 2014,
  • [50] Multivariate interpolation using radial basis function networks
    Dang Thi Thu Hien
    Hoang Xuan Huan
    Huu Tue Huynh
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2009, 1 (03) : 291 - 309