Social media retrieval using image features and structured text

被引:0
|
作者
Iskandar, D. N. F. Awang [1 ]
Pehcevski, Jovan [1 ]
Thom, James A. [1 ]
Tahaghoghi, S. M. M. [1 ]
机构
[1] RMIT Univ, Sch Comp Sci & Informat Technol, Melbourne, Vic, Australia
基金
澳大利亚研究理事会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Use of XML offers a structured approach for representing information while maintaining separation of form and content. XML information retrieval is different from standard text retrieval in two aspects: the XML structure may be of interest as part of the query; and the information does not have to be text. In this paper, we describe an investigation of approaches to retrieve text and images from a large collection of XML documents, performed in the course of our participation in the INEX 2006 Ad Hoc and Multimedia tracks. We evaluate three information retrieval similarity measures: Pivoted Cosine, Okapi BM25 and Dirichlet. We show that on the INEX 2006 Ad Hoc queries Okapi BM25 is the most effective among the three similarity measures used for retrieving text only, while Dirichlet is more suitable when retrieving heterogeneous (text and image) data.
引用
下载
收藏
页码:358 / 372
页数:15
相关论文
共 50 条
  • [21] Personality Prediction from Social Media Posts using Text Embedding and Statistical Features
    Majima, Seiyu
    Markov, Konstantin
    PROCEEDINGS OF THE 2022 17TH CONFERENCE ON COMPUTER SCIENCE AND INTELLIGENCE SYSTEMS (FEDCSIS), 2022, : 235 - 240
  • [22] Document Retrieval Using SIFT Image Features
    Smith, Dan
    Harvey, Richard
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2011, 17 (01) : 3 - 15
  • [23] Document Image Retrieval Using Deep Features
    Wiggers, Kelly L.
    Britto Jr, Alceu S.
    Heutte, Laurent
    Koerich, Alessandro L.
    Oliveira, Luiz Eduardo S.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [24] The image retrieval method using multiple features
    Ha, JeungYo
    Choi, HyungIl
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2007, PT 1, PROCEEDINGS, 2007, 4705 : 981 - +
  • [25] Image retrieval using spatial intensity features
    Takahashi, N
    Iwasaki, M
    Kunieda, T
    Wakita, Y
    Day, N
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2000, 16 (1-2) : 45 - 57
  • [26] Structured Image Segmentation Using Kernelized Features
    Lucchi, Aurelien
    Li, Yunpeng
    Smith, Kevin
    Fua, Pascal
    COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 : 400 - 413
  • [27] Image retrieval system using KANSEI features
    Kobayashi, H
    Okouchi, Y
    Ota, S
    PRICAI'98: TOPICS IN ARTIFICIAL INTELLIGENCE, 1998, 1531 : 626 - 635
  • [28] Image representation and retrieval using structure features
    Zhou, XS
    Huang, TS
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS: COMPUTER VISION AND IMAGE ANALYSIS, 2000, : 1039 - 1042
  • [29] Face Image Retrieval by Using Haar Features
    Shen, Bau-Cheng
    Chen, Chu-Song
    Hsu, Hui-Huang
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3779 - 3782
  • [30] Image retrieval using local color features
    Wu, TC
    Leou, JJ
    Kang, LW
    ICCE: 2005 INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, DIGEST OF TECHNICAL PAPERS, 2005, : 55 - 56