Local uniqueness of vortices for 2D steady Euler flow in a bounded domain

被引:1
|
作者
Cao, Daomin [1 ,2 ]
Yu, Weilin [1 ,2 ]
Zou, Changjun [3 ]
机构
[1] Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
关键词
The steady Euler equation; Kirchhoff-Routh function; Local uniqueness; Nonlinear stability; VORTEX PATCH PROBLEM; NONLINEAR STABILITY; EXISTENCE; RINGS; SHAPE;
D O I
10.1016/j.jfa.2022.109603
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the 2D Euler equation in a bounded simply -connected domain, and establish the local uniqueness of flow whose stream function psi(epsilon) satisfies { -epsilon(2) triangle psi epsilon = Sigma(i=1) (k) 1(B delta) (z(0,i))(psi(epsilon) -mu(epsilon),i)gamma+, in Omega,psi(epsilon) = 0, on theta Omega,with epsilon -> 0(+) the scale parameter of vortices, gamma is an element of (0, infinity), Omega subset of R-2 a bounded simply connected Lipschitz domain, z(0),(i) is an element of Omega the limiting location of i(th) vortex, and mu(epsilon,i) the flux constants unprescribed. Our proof is achieved by a detailed description of asymptotic behavior for psi(epsilon) and Pohozaev identity technique. For k = 1, we prove the nonlinear stability of corresponding vorticity in L-p norm, provided that z(0,1) is a non-degenerate minimum point of Robin function. This stability result can be generalized to the case k >= 2, and (z(0,1), ..., z(0,k)) is an element of theta Omega(k) being a non-degenerate minimum point of the Kirchhoff-Routh function.
引用
收藏
页数:43
相关论文
共 50 条
  • [41] Numerical study of non-uniqueness for 2D compressible isentropic Euler equations
    Bressan, Alberto
    Jiang, Yi
    Liu, Hailiang
    Journal of Computational Physics, 2021, 445
  • [42] Symmetry Results for Compactly Supported Steady Solutions of the 2D Euler Equations
    David Ruiz
    Archive for Rational Mechanics and Analysis, 2023, 247 (3)
  • [43] On zonal steady solutions to the 2D Euler equations on the rotating unit sphere
    Nualart, Marc
    NONLINEARITY, 2023, 36 (09) : 4981 - 5006
  • [44] Numerical study of non-uniqueness for 2D compressible isentropic Euler equations
    Bressan, Alberto
    Jiang, Yi
    Liu, Hailiang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 445
  • [45] Permeability through a perforated domain for the incompressible 2D Euler equations
    Bonnaillie-Noel, V.
    Lacave, C.
    Masmoudi, N.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (01): : 159 - 182
  • [46] Vortices of 2D systems
    Livsic, MS
    OPERATOR THEORY, SYSTEM THEORY AND RELATED TOPICS: THE MOSHE LIVSIC ANNIVERSARY VOLUME, 2001, 123 : 7 - 41
  • [47] Fourier-Galerkin approximation of the solutions of the 2D Euler equations with bounded vorticity
    Berselli, Luigi C.
    Spirito, Stefano
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2024, 21 (03) : 503 - 522
  • [48] Local existence with low regularity for the 2D compressible Euler equations
    Zhang, Huali
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2021, 18 (03) : 701 - 728
  • [49] 2D Flow in a Wall-bounded Porous Medium
    Ferreira de Sousa, P. J. S. A.
    Malico, Isabel
    Fernandes, G.
    DIFFUSION IN SOLIDS AND LIQUIDS VIII, 2013, 334-335 : 359 - 364
  • [50] A note on 2D Navier-Stokes system in a bounded domain
    Fan, Jishan
    Ozawa, Tohru
    AIMS MATHEMATICS, 2024, 9 (09): : 24908 - 24911