Effects of chamber pressure variation on the grid temperature in an inertial electrostatic confinement device

被引:9
|
作者
Murali, S. Krupakar [1 ]
Emmert, G. A. [2 ]
Santarius, J. F. [2 ]
Kulcinski, G. L. [2 ]
机构
[1] Lawrenceville Plasma Phys, Middlesex, NJ 08846 USA
[2] Univ Wisconsin, Fus Technol Inst, Madison, WI 53706 USA
关键词
Electrostatic devices - Inertial confinement fusion - Electrostatics;
D O I
10.1063/1.3484224
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Inertial electrostatic confinement fusion devices are compact sources of neutrons, protons, electrons, and x rays. Such sources have many applications. Improving the efficiency of the device also increases the applications of this device. Hence a thorough understanding of the operation of this device is needed. In this paper, we study the effect of chamber pressure on the temperature of the cathode. Experimentally, the grid temperature decreases as the chamber pressure increases; numerical simulations suggest that this is caused by the reduction of the hot ion current to the cathode as the pressure increases for constant power supply current. Such an understanding further supports the conclusion that the asymmetric heating of the cathode can be decreased by homogenizing the ion flow around the cathode. (C) 2010 American Institute of Physics. [doi:10.1063/1.3484224]
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Effects of electrode shape on performance characteristics of a cylindrical inertial electrostatic confinement fusion device
    Yamamoto, Y
    Kusaba, R
    Shirouzu, T
    Inoue, N
    FUSION TECHNOLOGY, 2001, 39 (03): : 1188 - 1192
  • [22] Discharge characteristics of the spherical inertial electrostatic, confinement (IEC) device
    Miley, GH
    Gu, YB
    DeMora, JM
    Stubbers, RA
    Hochberg, TA
    Nadler, JH
    Anderl, RA
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 1997, 25 (04) : 733 - 739
  • [23] Proton Detector Calibration in a Gridded Inertial Electrostatic Confinement Device
    Murali, S. Krupakar
    Santarius, John F.
    Kulcinski, Gerald L.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2010, 38 (11) : 3116 - 3127
  • [24] POTENTIAL WELL STRUCTURE IN AN INERTIAL ELECTROSTATIC PLASMA CONFINEMENT DEVICE
    SWANSON, DA
    CHERRINGTON, BE
    VERDEYEN, JT
    PHYSICS OF FLUIDS, 1973, 16 (11) : 1939 - 1945
  • [25] Spatial distribution of ion energies in an inertial electrostatic confinement device
    Khachan, J
    Moore, D
    Bosi, S
    PHYSICS OF PLASMAS, 2003, 10 (03) : 596 - 599
  • [26] Pulsed operation of spherical inertial-electrostatic confinement device
    Gu, Y
    Williams, M
    Stubbers, R
    Miley, G
    FUSION TECHNOLOGY, 1996, 30 (03): : 1342 - 1346
  • [27] Discharge characteristics of the spherical inertial electrostatic confinement (IEC) device
    Miley, GH
    Gu, Y
    DeMora, JM
    Stubbers, RA
    Hochberg, TA
    Nadler, JH
    Anderl, RA
    ISDEIV - XVIITH INTERNATIONAL SYMPOSIUM ON DISCHARGES AND ELECTRICAL INSULATION IN VACUUM, PROCEEDINGS, VOLS I AND II, 1996, : 654 - 658
  • [28] COMPUTER SIMUULATION OF CYLINDRICAL ELECTROSTATIC-INERTIAL CONFINEMENT DEVICE
    BARNES, C
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (11): : 1221 - &
  • [29] Effects of the Cathode Grid Wires on Fusion Proton Measurements in Inertial-Electrostatic Confinement Devices
    Murali, S. Krupakar
    Santarius, John F.
    Kulcinski, Gerald L.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (02) : 749 - 755
  • [30] Improvement in ion confinement time with multigrid configuration in an inertial electrostatic confinement fusion device
    Saikia, L.
    Adhikari, S.
    Mohanty, S. R.
    Bhattacharjee, D.
    PHYSICAL REVIEW E, 2024, 110 (01)