Canonical Metrics on Generalized Cartan-Hartogs Domains

被引:0
|
作者
Hao, Yihong [1 ]
机构
[1] NW Univ Xian, Dept Math, Xian 710127, Peoples R China
基金
中国国家自然科学基金;
关键词
Canonical metric; Extremal metric; Comparison theorem; Generalized Cartan-Hartogs domains; EXTREMAL KAHLER-METRICS; SCALAR CURVATURE; K-STABILITY; EXISTENCE; UNIQUENESS; MANIFOLDS; SURFACES; COMPACT;
D O I
10.1007/s11401-016-0976-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the author considers a class of bounded pseudoconvex domains, i.e., the generalized Cartan-Hartogs domains Omega(mu, m). The first result is that the natural Kahler metric g Omega((mu, m)) of Omega(mu, m) is extremal if and only if its scalar curvature is a constant. The second result is that the Bergman metric, the Kahler-Einstein metric, the Caratheodary metric, and the Koboyashi metric are equivalent for Omega(mu, m).
引用
收藏
页码:357 / 366
页数:10
相关论文
共 50 条