The leading coefficient of certain Kazhdan-Lusztig polynomials of the permutation group σn

被引:10
|
作者
Xi, NH [1 ]
机构
[1] Chinese Acad Sci, Inst Math, Beijing 100080, Peoples R China
关键词
D O I
10.1016/j.jalgebra.2004.08.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that the leading coefficient mu (y, w) of certain Kazhdan-Lusztig polynomials P-y,P-w of the permutation group G(n) of 1, 2, ..., n are not greater than 1. More precisely, we show that the leading coefficients mu(y w) are not greater than 1 whenever a(y) < a(w), where a : G(n) --> N is the function defined in [G. Lusztig, Cells in affine Weyl groups, in: Algebraic Groups and Related Topics, in: Adv. Stud. Pure Math., vol. 6, Kinokunia-North-Holland, 1985, pp. 255-287]. See 1.5 for a simple interpretation of the function a. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:136 / 145
页数:10
相关论文
共 50 条
  • [21] Super duality and Kazhdan-Lusztig polynomials
    Cheng, Shun-Jen
    Wang, Weiqiang
    Zhang, R. B.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (11) : 5883 - 5924
  • [22] Quasisymmetric functions and Kazhdan-Lusztig polynomials
    Billera, Louis J.
    Brenti, Francesco
    ISRAEL JOURNAL OF MATHEMATICS, 2011, 184 (01) : 317 - 348
  • [23] Kazhdan-Lusztig polynomials of thagomizer matroids
    Gedeon, Katie R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (03):
  • [24] Kazhdan-lusztig polynomials and canonical basis
    Frenkel I.B.
    Khovanov M.G.
    Kirillov Jr. A.A.
    Transformation Groups, 1998, 3 (4) : 321 - 336
  • [25] Kazhdan-Lusztig polynomials and drift configurations
    Li, Li
    Yong, Alexander
    ALGEBRA & NUMBER THEORY, 2011, 5 (05) : 595 - 626
  • [26] Construction of arbitrary Kazhdan-Lusztig polynomials
    Polo, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (04): : 281 - 285
  • [27] On parabolic Kazhdan-Lusztig R-polynomials for the symmetric group
    Fan, Neil J. Y.
    Guo, Peter L.
    Zhang, Grace L. D.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (01) : 237 - 250
  • [28] Quasisymmetric functions and Kazhdan-Lusztig polynomials
    Louis J. Billera
    Francesco Brenti
    Israel Journal of Mathematics, 2011, 184 : 317 - 348
  • [29] A COMBINATORIAL FORMULA FOR KAZHDAN-LUSZTIG POLYNOMIALS
    BRENTI, F
    INVENTIONES MATHEMATICAE, 1994, 118 (02) : 371 - 394
  • [30] Special matchings and Kazhdan-Lusztig polynomials
    Brenti, Francesco
    Caselli, Fabrizio
    Marietti, Mario
    ADVANCES IN MATHEMATICS, 2006, 202 (02) : 555 - 601