An improved result on Laplacian spectral ratio of connected graphs

被引:0
|
作者
Lin, Zhen [1 ]
Miao, Lianying [1 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Laplacian eigenvalues; Ratio; Tree; Graph operations; ALGEBRAIC CONNECTIVITY; EIGENVALUES; TREES;
D O I
10.1080/02522667.2020.1781883
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
The Laplacian spectral ratio of a connected graph G, denoted by r(L)(G), is defined as the quotient between the largest and second smallest Laplacian eigenvalues of G. In 2002, Barahona and Pecora showed that rL(G) play an important role in the network synchronization control. In this paper, we obtain a result on the Laplacian spectral ratio of trees, which improve the known result of You and Liu [Z. You, B. Liu, On the Laplacian spectral ratio of connected graphs, Appl. Math. Lett. 25(2012)1245-1250]. Moreover, some graph operations on Laplacian spectral ratio arc given.
引用
收藏
页码:711 / 718
页数:8
相关论文
共 50 条
  • [21] On the Laplacian spectral radii of tricyclic graphs
    Liu Mu-huo
    Wei Fu-yi
    Liu, Bolian
    ARS COMBINATORIA, 2014, 114 : 129 - 143
  • [22] Bounds for the Laplacian spectral radius of graphs
    Liu, Huiqing
    Lu, Mei
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (01): : 113 - 119
  • [23] Laplacian spectral characterization of clover graphs
    Wang, Luhua
    Wang, Ligong
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (12): : 2396 - 2405
  • [24] Some remarks on Laplacian eigenvalues of connected graphs
    Jovanovic, Z.
    Milovanovic, E. I.
    Milovanovic, I. Z.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 503 : 48 - 55
  • [25] On the distance Laplacian spectral radius of graphs
    Lin, Hongying
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 475 : 265 - 275
  • [26] Laplacian spectral characterization of dumbbell graphs and theta graphs
    Liu, Xiaogang
    Lu, Pengli
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (02)
  • [27] On the Laplacian spectral radii of Halin graphs
    Jia, Huicai
    Xue, Jie
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [28] On the Laplacian spectral radii of Halin graphs
    Huicai Jia
    Jie Xue
    Journal of Inequalities and Applications, 2017
  • [29] The maximum Laplacian Estrada index of connected graphs
    Zhang, Haixia
    Zhang, Ning
    Zhang, Zhuolin
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (02): : 178 - 189
  • [30] Maximizing the signless Laplacian spectral radius of minimally 3-connected graphs with given size
    Guo, Shu-Guang
    Zhang, Rong
    DISCRETE APPLIED MATHEMATICS, 2023, 341 : 204 - 211