An improved result on Laplacian spectral ratio of connected graphs

被引:0
|
作者
Lin, Zhen [1 ]
Miao, Lianying [1 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Laplacian eigenvalues; Ratio; Tree; Graph operations; ALGEBRAIC CONNECTIVITY; EIGENVALUES; TREES;
D O I
10.1080/02522667.2020.1781883
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
The Laplacian spectral ratio of a connected graph G, denoted by r(L)(G), is defined as the quotient between the largest and second smallest Laplacian eigenvalues of G. In 2002, Barahona and Pecora showed that rL(G) play an important role in the network synchronization control. In this paper, we obtain a result on the Laplacian spectral ratio of trees, which improve the known result of You and Liu [Z. You, B. Liu, On the Laplacian spectral ratio of connected graphs, Appl. Math. Lett. 25(2012)1245-1250]. Moreover, some graph operations on Laplacian spectral ratio arc given.
引用
收藏
页码:711 / 718
页数:8
相关论文
共 50 条
  • [1] On the Laplacian spectral ratio of connected graphs
    You, Zhifu
    Liu, Bolian
    APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1245 - 1250
  • [2] New bounds on the Laplacian spectral ratio of connected graphs
    Zhen Lin
    Min Cai
    Jiajia Wang
    Czechoslovak Mathematical Journal, 2024, 74 (4) : 1207 - 1220
  • [3] The Majorization Theorem for Signless Laplacian Spectral Radii of Connected Graphs
    Bolian Liu
    Muhuo Liu
    Zhifu You
    Graphs and Combinatorics, 2013, 29 : 281 - 287
  • [4] The Majorization Theorem for Signless Laplacian Spectral Radii of Connected Graphs
    Liu, Bolian
    Liu, Muhuo
    You, Zhifu
    GRAPHS AND COMBINATORICS, 2013, 29 (02) : 281 - 287
  • [5] An improved upper bound for the Laplacian spectral radius of graphs
    Lu, Mei
    Liu, Huiqing
    Tian, Feng
    DISCRETE MATHEMATICS, 2009, 309 (21) : 6318 - 6321
  • [6] The signless Laplacian spectral radius of k-connected irregular graphs
    Shiu, Wai Chee
    Huang, Peng
    Sun, Pak Kiu
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (04): : 830 - 839
  • [7] The (signless Laplacian) spectral radii of connected graphs with prescribed degree sequences
    Liu, Muhuo
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):
  • [8] The signless Laplacian spectral radius of k-connected irregular graphs
    Ning, Wenjie
    Lu, Mei
    Wang, Kun
    Jiang, Daqing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 553 : 117 - 128
  • [9] On Laplacian eigenvalues of connected graphs
    Igor Ž. Milovanović
    Emina I. Milovanović
    Edin Glogić
    Czechoslovak Mathematical Journal, 2015, 65 : 529 - 535
  • [10] On Laplacian eigenvalues of connected graphs
    Milovanovic, Igor Z.
    Milovanovic, Emina I.
    Glogic, Edin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (02) : 529 - 535