Bathymetric Inversion and Mapping of Two Shallow Lakes Using Sentinel-2 Imagery and Bathymetry Data in the Central Tibetan Plateau

被引:10
|
作者
Yang, Hong [1 ]
Ju, Jianting [2 ]
Guo, Hengliang [3 ]
Qiao, Baojin [4 ]
Nie, Bingkang [4 ]
Zhu, Liping [2 ,5 ]
机构
[1] Zhengzhou Univ, Sch Chem, Zhengzhou 450001, Peoples R China
[2] Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Tibetan Environm Changes & Land Surface P, Beijing 100101, Peoples R China
[3] Zhengzhou Univ, Natl Supercomp Ctr Zhengzhou, Zhengzhou 450001, Peoples R China
[4] Zhengzhou Univ, Sch Geosci & Technol, Zhengzhou 450001, Peoples R China
[5] CAS Ctr Excellence Tibetan Plateau Earth Sci, Beijing 100101, Peoples R China
关键词
Lakes; Satellites; Remote sensing; Bathymetry; Data models; Analytical models; Earth; Bathymetric mapping; machine learning (ML); remote sensing depth inversion; Sentinel-2; shallow lake; MULTISPECTRAL SATELLITE IMAGERY; WATER DEPTH; NEURAL-NETWORKS; AIRBORNE LIDAR; REGRESSION; RETRIEVAL; MODEL;
D O I
10.1109/JSTARS.2022.3177227
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High-accuracy lake bathymetry and mapping are crucial for estimating lake water storage on the Tibetan Plateau (TP). In this article, we constructed traditional empirical (TE) models and machine learning (ML) models to compare the prediction accuracy and remote sensing bathymetric mapping performance by using Sentinel-2 satellite imagery and in situ measured water depth from Caiduochaka (CK) and QiXiang Co in the central TP. We analyzed the relationship between the band reflectance and depth and explored the universality of the model in different lakes. The results indicated that when using the TE model, the mean absolute percentage error (MAPE) varied between 14.5% and 26.5% for the test dataset at different study sites. When using the ML models, the MAPE varied between 7.6% and 18.9%, and it was the better choice overall. For the test dataset of the random forest model with the highest accuracy, in the CK with the maximum depth of approximately 16 m, the mean absolute error (MAE) and root-mean-square error (RMSE) were 0.54 and 0.89 m, and the precision was the highest with an MAE of 1.13 m and RMSE of 1.67 m in QiXiang Co with a maximum depth of approximately 28 m, whereas the portability of the model was not satisfactory. Overall, the results indicated that the ML model can obtain bathymetric maps with high accuracy, good visual performance, and reliability, outperforming the TE model. It can be used effectively for deriving accurate and updated high-resolution bathymetric maps for shallow lakes.
引用
收藏
页码:4279 / 4296
页数:18
相关论文
共 50 条
  • [31] Mineral content estimation for salt lakes on the Tibetan plateau based on the genetic algorithm-based feature selection method using Sentinel-2 imagery: A case study of the Bieruoze Co and Guopu Co lakes
    Guo, Hengliang
    Dai, Wenhao
    Zhang, Rongrong
    Zhang, Dujuan
    Qiao, Baojin
    Zhang, Gubin
    Zhao, Shan
    Shang, Jiandong
    FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [32] Synergistic Fusion of ICESat-2 Lidar and Sentinel-2 Data to Leverage Potential Mapping of Bathymetry in Remote Islands Using SVR
    Surisetty, V. V. Arun Kumar
    Rajput, Preeti
    Ramakrishnan, Ratheesh
    Venkateswarlu, Ch
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2023, 51 (02) : 361 - 369
  • [33] Synergistic Fusion of ICESat-2 Lidar and Sentinel-2 Data to Leverage Potential Mapping of Bathymetry in Remote Islands Using SVR
    V. V. Arun Kumar Surisetty
    Preeti Rajput
    Ratheesh Ramakrishnan
    Ch. Venkateswarlu
    Journal of the Indian Society of Remote Sensing, 2023, 51 : 361 - 369
  • [34] Improved Bathymetric Mapping of Coastal and Lake Environments Using Sentinel-2 and Landsat-8 Images
    Yunus, Ali P.
    Dou, Jie
    Song, Xuan
    Avtar, Ram
    SENSORS, 2019, 19 (12)
  • [35] Investigation of sediment accumulation in Berdan Dam Reservoir using bathymetric measurements and Sentinel-2 Data
    Şerife Pınar Güvel
    Mehmet Ali Akgül
    Recep Yurtal
    Arabian Journal of Geosciences, 2021, 14 (24)
  • [36] Mapping Mining Areas in the Brazilian Amazon Using MSI/Sentinel-2 Imagery (2017)
    Lobo, Felipe de Lucia
    Souza-Filho, Pedro Walfir M.
    Leao de Moraes Novo, Evlyn Marcia
    Carlos, Felipe Menino
    Faria Barbosa, Claudio Clemente
    REMOTE SENSING, 2018, 10 (08):
  • [37] Nearshore Bathymetry from ICESat-2 LiDAR and Sentinel-2 Imagery Datasets Using Deep Learning Approach
    School of Geography and Information Engineering, China University of Geosciences, Wuhan
    430074, China
    Remote Sens., 17
  • [38] A deep learning approach for automatic mapping of poplar plantations using Sentinel-2 imagery
    D'Amico, G.
    Francini, S.
    Giannetti, F.
    Vangi, E.
    Travaglini, D.
    Chianucci, F.
    Mattioli, W.
    Grotti, M.
    Puletti, N.
    Corona, P.
    Chirici, G.
    GISCIENCE & REMOTE SENSING, 2021, 58 (08) : 1352 - 1368
  • [39] Early-Season Mapping of Winter Crops Using Sentinel-2 Optical Imagery
    Tian, Haifeng
    Wang, Yongjiu
    Chen, Ting
    Zhang, Lijun
    Qin, Yaochen
    REMOTE SENSING, 2021, 13 (19)
  • [40] Nearshore Bathymetry from ICESat-2 LiDAR and Sentinel-2 Imagery Datasets Using Deep Learning Approach
    Zhong, Jing
    Sun, Jie
    Lai, Zulong
    Song, Yan
    REMOTE SENSING, 2022, 14 (17)