Glucose metabolism and cardiac hypertrophy

被引:237
|
作者
Kolwicz, Stephen C., Jr. [1 ]
Tian, Rong [1 ]
机构
[1] Univ Washington, Sch Med, Dept Anesthesiol & Pain Med, Mitochondria & Metab Ctr, Seattle, WA 98109 USA
基金
美国国家卫生研究院;
关键词
Glycolysis; Metabolic flexibility; Foetal metabolic profile; ACTIVATED-RECEPTOR-ALPHA; GLUCAGON-LIKE PEPTIDE-1; FATTY-ACID OXIDATION; PRESSURE-OVERLOAD HYPERTROPHY; PENTOSE-PHOSPHATE PATHWAY; LEFT-VENTRICULAR DYSFUNCTION; CONGESTIVE-HEART-FAILURE; PROPIONYL-L-CARNITINE; FAILING HUMAN HEART; RAT HEARTS;
D O I
10.1093/cvr/cvr071
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The most notable change in the metabolic profile of hypertrophied hearts is an increased reliance on glucose with an overall reduced oxidative metabolism, i.e. a reappearance of the foetal metabolic pattern. In animal models, this change is attributed to the down-regulation of the transcriptional cascades promoting gene expression for fatty acid oxidation and mitochondrial oxidative phosphorylation in adult hearts. Impaired myocardial energetics in cardiac hypertrophy also triggers AMP-activated protein kinase (AMPK), leading to increased glucose uptake and glycolysis. Aside from increased reliance on glucose as an energy source, changes in other glucose metabolism pathways, e. g. the pentose phosphate pathway, the glucosamine biosynthesis pathway, and anaplerosis, are also noted in the hypertrophied hearts. Studies using transgenic mouse models and pharmacological compounds to mimic or counter the switch of substrate preference in cardiac hypertrophy have demonstrated that increased glucose metabolism in adult heart is not harmful and can be beneficial when it provides sufficient fuel for oxidative metabolism. However, improvement in the oxidative capacity and efficiency rather than the selection of the substrate is likely the ultimate goal for metabolic therapies.
引用
收藏
页码:194 / 201
页数:8
相关论文
共 50 条
  • [31] Cardiac-specific overexpression of LXR-alpha attenuates left ventricular hypertrophy by modulating glucose uptake and metabolism
    Cannon, M. V.
    Sillje, H. H. W.
    Segbers, M.
    Van der Sluis, B.
    Van Deursen, J. M.
    Vreeswijk-Baudoin, I.
    Silva, G. J. J.
    De Windt, L. J.
    Van Gilst, W. H.
    De Boer, R. A.
    EUROPEAN HEART JOURNAL, 2013, 34 : 605 - 605
  • [32] Energy Metabolism in Exercise-Induced Physiologic Cardiac Hypertrophy
    Xiang, Kefa
    Qin, Zhen
    Zhang, Huimin
    Liu, Xia
    FRONTIERS IN PHARMACOLOGY, 2020, 11
  • [33] Cardiac energy metabolism alterations in angiotensin II induced hypertrophy
    Lopaschuk, Gary D.
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2006, 41 (03) : 418 - 420
  • [34] NUTRITIONAL EFFECTS ON CARDIAC GLUCOSE-METABOLISM
    RATTIGAN, S
    CLARK, MG
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1984, 16 (07) : R15 - R15
  • [35] DETERMINANTS OF CARDIAC GLUCOSE-METABOLISM INVIVO
    LIM, SP
    WAHLQVIST, ML
    CLINICAL RESEARCH, 1984, 32 (02): : A185 - A185
  • [36] In vivo assessment of cardiac metabolism and function in the abdominal aortic bandingmodel of compensated cardiac hypertrophy
    Seymour, Anne-Marie L.
    Giles, Lucia
    Ball, Vicky
    Miller, Jack J.
    Clarke, Kieran
    Carr, Carolyn A.
    Tyler, Damian J.
    CARDIOVASCULAR RESEARCH, 2015, 106 (02) : 249 - 260
  • [37] Assessment of intermediary metabolism in exercise-induced physiological cardiac hypertrophy using 13C-glucose isotope tracing
    Shen, J.
    Reumiller, C.
    Visnagri, A.
    Catibog, N.
    Santos, C. X. D. C. D.
    Shah, A.
    ACTA PHYSIOLOGICA, 2022, 236 : 39 - 41
  • [38] Metabolic Remodeling Promotes Cardiac Hypertrophy by Directing Glucose to Aspartate Biosynthesis
    Ritterhoff, Julia
    Young, Sara
    Villet, Outi
    Shao, Dan
    Neto, F. Carnevale
    Bettcher, Lisa F.
    Hsu, Yun-Wei A.
    Kolwicz, Stephen C.
    Raftery, Daniel
    Tian, Rong
    CIRCULATION RESEARCH, 2020, 126 (02) : 182 - 196
  • [39] Cardiac hypertrophy suppresses glucose oxidation in newborns with congenital heart defects
    Rawat, Sonia
    Fukushima, Arata
    Zhang, Liyan
    Huqi, Alda
    Altamimi, Tariq
    Wagg, Cory
    Hornberger, Lisa
    Kantor, Paul
    Rebeyka, Ivan
    Lopaschuk, Gary
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2017, 112 : 138 - 138
  • [40] Cardiac LXR protects against pathological cardiac hypertrophy and dysfunction by enhancing glucose uptake and utilization
    Cannon, Megan V.
    Sillje, Herman H. W.
    Sijbesma, Jurgen W. A.
    Vreeswijk-Baudoin, Inge
    Ciapaite, Jolita
    van der Sluis, Bart
    van Deursen, Jan
    Silva, Gustavo J. J.
    de Windt, Leon J.
    Gustafsson, Jan-Ake
    van der Harst, Pim
    van Gilst, Wiek H.
    de Boer, Rudolf A.
    EMBO MOLECULAR MEDICINE, 2015, 7 (09) : 1229 - 1243