Lagrangian analysis of multiscale particulate flows with the particle finite element method

被引:42
|
作者
Onate, Eugenio [1 ]
Angel Celigueta, Miguel [1 ]
Latorre, Salvador [1 ]
Casas, Guillermo [1 ]
Rossi, Riccardo [1 ]
Rojek, Jerzy [2 ]
机构
[1] CIMNE, Campus Norte UPC, Barcelona 08034, Spain
[2] Polish Acad Sci, Inst Fundamental Technol Res, Warsaw, Poland
基金
欧洲研究理事会;
关键词
Lagrangian analysis; Multiscale particulate flows; Particle finite element method; FLUID-STRUCTURE INTERACTION; FREE-SURFACE FLOWS; INCOMPRESSIBLE FLOWS; BED EROSION; CALCULUS; COMPUTATION; FORMULATION; SIMULATION; SOLIDS; TOOL;
D O I
10.1007/s40571-014-0012-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles of different sizes. The numerical approach is based on the particle finite element method (PFEM) which blends concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the PFEM to several particulate flows problems are given.
引用
收藏
页码:85 / 102
页数:18
相关论文
共 50 条
  • [41] Validation of the particle finite element method (PFEM) for simulation of free surface flows
    Larese, A.
    Rossi, R.
    Onate, E.
    Idelsohn, S. R.
    ENGINEERING COMPUTATIONS, 2008, 25 (3-4) : 385 - 425
  • [42] Modeling bed erosion in free surface flows by the particle finite element method
    Onate, Eugenio
    Celigueta, Miguel A.
    Idelsohn, Sergio R.
    ACTA GEOTECHNICA, 2006, 1 (04) : 237 - 252
  • [43] An enhanced semi-explicit particle finite element method for incompressible flows
    Marti, Julio
    Onate, Eugenio
    COMPUTATIONAL MECHANICS, 2022, 70 (03) : 607 - 620
  • [44] A MULTISCALE FINITE ELEMENT METHOD FOR THE SCHRODINGER EQUATION WITH MULTISCALE POTENTIALS
    Chen, Jingrun
    Ma, Dingjiong
    Zhang, Zhiwen
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05): : B1115 - B1136
  • [45] A VARIATIONAL ANALYSIS FOR THE MOVING FINITE ELEMENT METHOD FOR GRADIENT FLOWS*
    Xu, Xianmin
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (02): : 191 - 210
  • [46] ANALYSIS OF VARIANCE-BASED MIXED MULTISCALE FINITE ELEMENT METHOD AND APPLICATIONS IN STOCHASTIC TWO-PHASE FLOWS
    Wei, Jia
    Lin, Guang
    Jiang, Lijian
    Efendiev, Yalchin
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2014, 4 (06) : 455 - 477
  • [47] Mortar multiscale finite element methods for Stokes–Darcy flows
    Vivette Girault
    Danail Vassilev
    Ivan Yotov
    Numerische Mathematik, 2014, 127 : 93 - 165
  • [48] Multiscale finite element methods for porous media flows and their applications
    Efendiev, Y.
    Hou, T.
    APPLIED NUMERICAL MATHEMATICS, 2007, 57 (5-7) : 577 - 596
  • [49] Extended multiscale finite element method for mechanical analysis of heterogeneous materials
    Hong-Wu Zhang·Jing-Kai Wu·Jun L·Zhen-Dong Fu State Key Laboratory of Structural Analysis for Industrial Equipment
    Acta Mechanica Sinica, 2010, (06) : 899 - 920
  • [50] Extended multiscale finite element method for mechanical analysis of heterogeneous materials
    HongWu ZhangJingKai WuJun LZhenDong Fu State Key Laboratory of Structural Analysis for Industrial Equipment Department of Engineering Mechanics Faculty of Vehicle Engineering and Mechanics Dalian University of TechnologyDalian China
    Acta Mechanica Sinica, 2010, 26 (06) : 899 - 920