Lagrangian analysis of multiscale particulate flows with the particle finite element method

被引:42
|
作者
Onate, Eugenio [1 ]
Angel Celigueta, Miguel [1 ]
Latorre, Salvador [1 ]
Casas, Guillermo [1 ]
Rossi, Riccardo [1 ]
Rojek, Jerzy [2 ]
机构
[1] CIMNE, Campus Norte UPC, Barcelona 08034, Spain
[2] Polish Acad Sci, Inst Fundamental Technol Res, Warsaw, Poland
基金
欧洲研究理事会;
关键词
Lagrangian analysis; Multiscale particulate flows; Particle finite element method; FLUID-STRUCTURE INTERACTION; FREE-SURFACE FLOWS; INCOMPRESSIBLE FLOWS; BED EROSION; CALCULUS; COMPUTATION; FORMULATION; SIMULATION; SOLIDS; TOOL;
D O I
10.1007/s40571-014-0012-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles of different sizes. The numerical approach is based on the particle finite element method (PFEM) which blends concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the PFEM to several particulate flows problems are given.
引用
收藏
页码:85 / 102
页数:18
相关论文
共 50 条
  • [1] Lagrangian analysis of multiscale particulate flows with the particle finite element method
    Eugenio Oñate
    Miguel Angel Celigueta
    Salvador Latorre
    Guillermo Casas
    Riccardo Rossi
    Jerzy Rojek
    Computational Particle Mechanics, 2014, 1 : 85 - 102
  • [2] A second-order semi-Lagrangian particle finite element method for fluid flows
    Jonathan Colom-Cobb
    Julio Garcia-Espinosa
    Borja Servan-Camas
    P. Nadukandi
    Computational Particle Mechanics, 2020, 7 : 3 - 18
  • [3] A second-order semi-Lagrangian particle finite element method for fluid flows
    Colom-Cobb, Jonathan
    Garcia-Espinosa, Julio
    Servan-Camas, Borja
    Nadukandi, P.
    COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (01) : 3 - 18
  • [4] Fictitious domain/finite element method for particulate flows
    Diaz-Goano, C
    Minev, PD
    Nandakumar, K
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 192 (01) : 105 - 123
  • [5] Lagrangian finite element analysis of Newtonian fluid flows
    Radovitzky, R
    Ortiz, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1998, 43 (04) : 607 - 617
  • [6] Seakeeping with the semi-Lagrangian particle finite element method
    Nadukandi, Prashanth
    Servan-Camas, Borja
    Agustin Becker, Pablo
    Garcia-Espinosa, Julio
    COMPUTATIONAL PARTICLE MECHANICS, 2017, 4 (03) : 321 - 329
  • [7] An extended finite element method for the simulation of particulate viscoelastic flows
    Choi, Young Joon
    Hulsen, Martien A.
    Meijer, Han E. H.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2010, 165 (11-12) : 607 - 624
  • [8] Seakeeping with the semi-Lagrangian particle finite element method
    Prashanth Nadukandi
    Borja Servan-Camas
    Pablo Agustín Becker
    Julio Garcia-Espinosa
    Computational Particle Mechanics, 2017, 4 : 321 - 329
  • [9] Multiscale finite element analysis of bulk nano-particle fabrication by a mechanical method
    Chen, Hui
    Li, Leijun
    Yu, Wenbin
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2009, 209 (09) : 4243 - 4247
  • [10] VARIATIONAL MULTISCALE FINITE ELEMENT METHOD FOR FLOWS IN HIGHLY POROUS MEDIA
    Iliev, O.
    Lazarov, R.
    Willems, J.
    MULTISCALE MODELING & SIMULATION, 2011, 9 (04): : 1350 - 1372