Nonunitary entanglement dynamics in continuous-variable systems

被引:7
|
作者
Zhou, Tianci [1 ,3 ]
Chen, Xiao [2 ]
机构
[1] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[2] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
[3] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Quantum entanglement - Gaussian distribution - Vector spaces;
D O I
10.1103/PhysRevB.104.L180301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We construct random unitary Gaussian circuits for continuous-variable (CV) systems subject to Gaussian measurements. We show that when the measurement rate is nonzero, the steady-state entanglement entropy saturates to an area-law scaling. This is different from a many-body qubit system, where a generic entanglement transition is widely expected. Due to the unbounded local Hilbert space, the time scale to destroy entanglement is always much shorter than the one to build it, while a balance could be achieved for a finite local Hilbert space. By the same reasoning, the absence of transition should also hold for other nonunitary Gaussian CV dynamics.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [41] Quantum repeater for continuous-variable entanglement distribution
    Dias, Josephine
    Winnel, Matthew S.
    Hosseinidehaj, Nedasadat
    Ralph, Timothy C.
    PHYSICAL REVIEW A, 2020, 102 (05)
  • [42] The generation of Continuous-Variable Entanglement Frequency Comb
    Youbin Yu
    Xiaomin Cheng
    Huaijun Wang
    Zhongtao Shi
    Junwei Zhao
    Fengmin Ji
    Zhi Yin
    Yajuan Wang
    Scientific Reports, 5
  • [43] Path Entanglement of Continuous-Variable Quantum Microwaves
    Menzel, E. P.
    Di Candia, R.
    Deppe, F.
    Eder, P.
    Zhong, L.
    Ihmig, M.
    Haeberlein, M.
    Baust, A.
    Hoffmann, E.
    Ballester, D.
    Inomata, K.
    Yamamoto, T.
    Nakamura, Y.
    Solano, E.
    Marx, A.
    Gross, R.
    PHYSICAL REVIEW LETTERS, 2012, 109 (25)
  • [44] Nonclassicality and entanglement for continuous-variable quantum information
    Nha, Hyunchul
    Lee, Jaehak
    Park, Jiyong
    QUANTUM AND NONLINEAR OPTICS V, 2018, 10825
  • [45] Locally optimal control of continuous-variable entanglement
    Albarelli, Francesco
    Shackerley-Bennett, Uther
    Serafini, Alessio
    PHYSICAL REVIEW A, 2018, 98 (06)
  • [46] Tripartite continuous-variable entanglement of NOPA system
    Zhao, Chao-Ying
    Zhang, Cheng-Mei
    CHINESE PHYSICS B, 2018, 27 (08)
  • [47] Distillation of continuous-variable entanglement with optical means
    Eisert, J
    Browne, DE
    Scheel, S
    Plenio, MB
    ANNALS OF PHYSICS, 2004, 311 (02) : 431 - 458
  • [48] Continuous-variable multipartite entanglement in an integrated microcomb
    Xinyu Jia
    Chonghao Zhai
    Xuezhi Zhu
    Chang You
    Yunyun Cao
    Xuguang Zhang
    Yun Zheng
    Zhaorong Fu
    Jun Mao
    Tianxiang Dai
    Lin Chang
    Xiaolong Su
    Qihuang Gong
    Jianwei Wang
    Nature, 2025, 639 (8054) : 329 - 336
  • [49] The generation of Continuous-Variable Entanglement Frequency Comb
    Yu, Youbin
    Cheng, Xiaomin
    Wang, Huaijun
    Shi, Zhongtao
    Zhao, Junwei
    Ji, Fengmin
    Yin, Zhi
    Wang, Yajuan
    SCIENTIFIC REPORTS, 2015, 5
  • [50] Continuous-variable entanglement sharing in noninertial frames
    Adesso, Gerardo
    Fuentes-Schuller, Ivette
    Ericsson, Marie
    PHYSICAL REVIEW A, 2007, 76 (06)