Nonunitary entanglement dynamics in continuous-variable systems

被引:7
|
作者
Zhou, Tianci [1 ,3 ]
Chen, Xiao [2 ]
机构
[1] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[2] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
[3] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Quantum entanglement - Gaussian distribution - Vector spaces;
D O I
10.1103/PhysRevB.104.L180301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We construct random unitary Gaussian circuits for continuous-variable (CV) systems subject to Gaussian measurements. We show that when the measurement rate is nonzero, the steady-state entanglement entropy saturates to an area-law scaling. This is different from a many-body qubit system, where a generic entanglement transition is widely expected. Due to the unbounded local Hilbert space, the time scale to destroy entanglement is always much shorter than the one to build it, while a balance could be achieved for a finite local Hilbert space. By the same reasoning, the absence of transition should also hold for other nonunitary Gaussian CV dynamics.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [1] Entanglement and squeezing in continuous-variable systems
    Gessner, Manuel
    Pezze, Luca
    Smerzi, Augusto
    QUANTUM, 2017, 1
  • [2] Continuous-variable entanglement dynamics in Lorentzian environment
    Teklu, Berihu
    PHYSICS LETTERS A, 2022, 432
  • [3] Entanglement quantification and purification in continuous-variable systems
    Parker, S
    Bose, S
    Plenio, MB
    PHYSICAL REVIEW A, 2000, 61 (03): : 8
  • [4] Optimal entanglement witnesses for continuous-variable systems
    Hyllus, P
    Eisert, J
    NEW JOURNAL OF PHYSICS, 2006, 8
  • [5] Generalized entanglement measure for continuous-variable systems
    Swain, S. Nibedita
    Bhaskara, Vineeth S.
    Panigrahi, Prasanta K.
    PHYSICAL REVIEW A, 2022, 105 (05)
  • [6] Bipartite entanglement in continuous-variable tripartite systems
    Olsen, M. K.
    Corney, J. F.
    OPTICS COMMUNICATIONS, 2016, 378 : 49 - 57
  • [7] Entanglement quantification and purification in continuous-variable systems
    Parker, S.
    Bose, S.
    Plenio, M.B.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (03): : 323051 - 323058
  • [8] Local entanglement of multidimensional continuous-variable systems
    Lin, H. -C.
    Fisher, A. J.
    PHYSICAL REVIEW A, 2008, 78 (01):
  • [9] Detection of bound entanglement in continuous-variable systems
    Zhang, Cheng-Jie
    Nha, Hyunchul
    Zhang, Yong-Sheng
    Guo, Guang-Can
    PHYSICAL REVIEW A, 2010, 82 (03):
  • [10] Continuous-variable entanglement purification with atomic systems
    Rebic, Stojan
    Mancini, Stefano
    Morigi, Giovanna
    Vitali, David
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2010, 27 (06) : A198 - A207