Effect of synthesis temperature on the structural defects of integrated spinel-layered Li1.2Mn0.75Ni0.25O2+δ: a strategy to develop high-capacity cathode materials for Li-ion batteries

被引:22
|
作者
Vu, Ngoc Hung [1 ]
Arunkumar, Paulraj [1 ]
Im, Jong Chan [1 ]
Ngo, Duc Tung [1 ]
Le, Hang T. T. [1 ,2 ]
Park, Chan-Jin [1 ]
Bin Im, Won [1 ]
机构
[1] Chonnam Natl Univ, Sch Mat Sci & Engn, Optoelect Convergence Res Ctr, 77 Yongbong Ro, Gwangju 61186, South Korea
[2] Hanoi Univ Sci & Technol, Sch Chem Engn, 1st Dai Co Viet, Hanoi, Vietnam
基金
新加坡国家研究基金会;
关键词
LITHIUM RECHARGEABLE BATTERIES; X-RAY-DIFFRACTION; ELECTROCHEMICAL PERFORMANCE; FACILE SYNTHESIS; CYCLING PERFORMANCE; LATTICE-VIBRATIONS; MANGANESE OXIDES; RATE CAPABILITY; LINI0.5MN1.5O4; LI2MNO3;
D O I
10.1039/c7ta04002d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An integrated layered-spinel with a nominal composition of (1 - x)Li1.2Mn0.6Ni0.2O2 center dot xLiMn(1.5)Ni(0.5)O(4) (0.15 < x < 0.3) was synthesized by a hydrothermal reaction followed by firing at different temperatures. The effects of firing temperature on the phase components, cation disorder, and crystal defects, and their relationship with the electrochemical performance of the cathode material were studied. The sample fired at 650 degrees C showed the highest capacity of up to 320 mA h g(-1) and highest initial coulombic efficiency (98%, 2-4.9 V), but the capacity decreased dramatically to only 55% after 50 cycles. The sample fired at 850 degrees C showed the slowest activation of the layered phase, requiring up to several dozen cycles. The intermediate firing temperature of 750 degrees C showed a balance between the activation rate, capacity, initial coulombic efficiency, and cycling stability, with 270 mA h g(-1) after 10 cycles and a 99% capacity retention after 50 cycles. All samples showed different rates of the layered-to-spinel phase transformation, which depends on the activation rate. This study reports the relationships between synthesis conditions, structure, and electrochemical performance, providing a strategy to develop high-capacity cathode materials based on the (1 - x)Li1.2Mn0.6Ni0.2O2 center dot xLiMn(1.5)Ni(0.5)O(4) system.
引用
收藏
页码:15730 / 15742
页数:13
相关论文
共 50 条
  • [31] Reversible Electrochemical Conversion Reaction of Li2O/CuO Nanocomposites and Their Application as High-Capacity Cathode Materials for Li-Ion Batteries
    Li, Ting
    Ai, Xin P.
    Yang, Han X.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (13): : 6167 - 6174
  • [32] Microwave-assisted synthesis of Co-free Li[Li0.2Ni0.2Mn0.6]O2 cathodes with a spinel-layered coherent structure for high-power Li-ion batteries
    Wang, Shenggui
    Chen, Jinniu
    Zhao, Tian
    Yang, Xiaoxia
    Qiu, Lang
    Wang, Yuankui
    Song, Yang
    Wu, Zhonghua
    Guo, Xiaodong
    Yu, Kun
    CHEMICAL COMMUNICATIONS, 2024, 60 (12) : 1634 - 1637
  • [33] Li1.2Ni0.25Mn0.55O2: A high-capacity cathode material with a homogeneous monoclinic Li2MnO3-like superstructure
    Wu, Zhi-Liang
    Xie, Hanjie
    Li, Yingzi
    Zhang, Fangchang
    Wang, Zhenyu
    Zheng, Wei
    Yang, Mingyang
    Xu, Zhenghe
    Lu, Zhouguang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 827
  • [34] AlF3-coated Li(Li0.17Ni0.25Mn0.58)O2 as cathode material for Li-ion batteries
    Li, G. R.
    Feng, X.
    Ding, Y.
    Ye, S. H.
    Gao, X. P.
    ELECTROCHIMICA ACTA, 2012, 78 : 308 - 315
  • [35] Reactive template synthesis of Li1.2Mn0.54Ni0.13Co0.13O2 nanorod cathode for Li-ion batteries: Influence of temperature over structural and electrochemical properties
    Vivekanantha, Murugan
    Senthil, Chenrayan
    Kesavan, Thangaian
    Partheeban, Thamodaran
    Navaneethan, Mani
    Senthilkumar, Baskar
    Barpanda, Prabeer
    Sasidharan, Manickam
    ELECTROCHIMICA ACTA, 2019, 317 : 398 - 407
  • [36] Facile synthesis of spinel Li Ni0.5Mn1.5O4 as 5.0 V-class high-voltage cathode materials for Li-ion batteries
    Xueyi Guo
    Chenlin Yang
    Jinxiu Chen
    Qinghua Tian
    Hongmei Zhang
    Guoyong Huang
    Chinese Journal of Chemical Engineering, 2021, 39 (11) : 247 - 254
  • [37] Facile synthesis of porous Li-rich layered Li[Li0.2Mn0.534Ni0.133Co0.133]O2 as high-performance cathode materials for Li-ion batteries
    Cao, Chenwei
    Xi, Liujiang
    Leung, Kwan Lan
    Wang, Man
    Liu, Ying
    Ma, Ruguang
    Yang, Shiliu
    Lu, Zhouguang
    Chung, C. Y.
    RSC ADVANCES, 2015, 5 (39): : 30507 - 30513
  • [38] Surface modification single crystal Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 as high performance cathode materials for Li-ion batteries
    Jiao, Changmei
    Wang, Meng
    Huang, Bing
    Zhang, Mengxia
    Xu, Guodong
    Liu, Yuxin
    Zhao, Yunfeng
    Hu, Xuebu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 937
  • [39] N-Doped Graphene-Modified Li-Rich Layered Li1.2Mn0.6Ni0.2O2 Cathode for High-Performance Li-Ion Batteries
    Chen, Min
    Zhang, Gaige
    Wu, Binhong
    Liu, Mingzhu
    Chen, Jiakun
    Xiang, Wenjin
    Li, Weishan
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (04): : 4307 - 4317
  • [40] Preparation and characterization of spinel-layered mixed structural 0.2LiNi0.5Mn1.5O4•0.8Li[Li0.2Ni0.2Mn0.6]O2 as cathode materials for lithium-ion batteries
    Ge, Tao
    Guo, Zhaoxin
    Wu, Minfang
    Sun, Rui
    Li, Weili
    Yang, Gang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 801 : 254 - 261